ãã¡ã¤ãã¼ä»ãåã{fibred | fibered} categoryãã¯ãåè«ã§éè¦ãªæ¦å¿µã§ãããã¡ã¤ãã¼ä»ãåã®å®ä½ã¯ï¼åã§ã¯ãªãã¦ï¼é¢æã§ããã¨ããæ§è³ªãæã¤æå¥ãªé¢æããã¡ã¤ãã¼ä»ãåã§ãããã¨ããæ§è³ªããè¨è¿°ããããã«ã¯ãé¢æã«ä¼´ããã«ã«ãå°ã¨ããæ¦å¿µãâ¦
ã¯ã©ã³ãclanãã¯ãã¸ã§ã¤ã¢ã«ãAndre Joyalãã«ãã£ã¦å°å ¥ãããåè«çæ§é ãæ§é ä»ãã®åãã§ããã¸ã§ã¤ã¢ã«ã¯ãåçè«ã®çè«ãtheory of type theoriesãã®åºç¤ã¨ãã¦ã¯ã©ã³ãå®ç¾©ããããã§ããã¯ã©ã³ã¨ãã®å対ã§ããã³ã¯ã©ã³ã¯åçè«ãè¨ç®ç§å¦ã§æç¨â¦
ã¬ã³ãºã説æããããã®äºä¾ã¨ãã¦ãåã¯ãã°ãã°âWebã®ãµã¼ãã¼ãµã¤ãå¦çâãæãã¾ããã¬ã³ãºã¯HTTPãããã³ã«ã®å¤æããã»ããµã«ç¸å½ããã¬ã³ãºã®çµåï¼ç´åçµåï¼ã¯ãã¤ãã©ã¤ã³æ§æã«ç¸å½ãã¾ããããé¢æã¯ãéåã®æã«åã両å´ããä½ç¨ãã¦ãã代æ°æ§â¦
ãåè«ã®ã¨ã³ãã¨ã³ã¨ã³ãã¯å対ãªãã ããã§è¿°ã¹ãããã«ãã¨ã³ãã¨ã³ã¨ã³ãã¯å®å ¨ã«å対ãªã®ã§ããããã®å対æ§ããªããªãã«åããã«ããããã§ããã¨ã³ãã®ä½ãæ¹ã¯ãé£ç«æ¹ç¨å¼ç³»ã®è§£ç©ºéãæ±ãããè¡çºã«ãªã£ã¦ãã¾ããã³ã¨ã³ããä½ããã¨ã¯ãã®è¡çºã®â¦
ãã¹ã±ããã£ãã¯ãã§è¿°ã¹ãããã«ãã¹ã±ããã£ãã¯éåã¯ãâçµµå³çææ³ã«ããä¸è¬åããã代æ°ç³»âã®å°ãunderlying thing | carrieãã¨ãªãæ§é ã§ããã¹ã±ããã£ãã¯éåã¯ãéåã«çµã¿åããå¹¾ä½çæ§é ãè¼ã£ã対象ç©ã§ããæåã°ã©ããç¡åã°ã©ããçä½éâ¦
YouTubeã®ã¨ããåºåã§ã¿ã¤ãã«ã®ãã¨ãè¨ã£ã¦ããããã«èããããããååã®Webãµã¤ãã«ã¯ããã¬ãã¯ã¹ã®æè¨ãã ã¨ã¯ä¸è¨ãæ¸ãã¦ãªããåºåå ã§ã¢ãã¦ã³ã¹ãã¦ããæè¨ã¯æ¬¡ã®ããã ãã¬ãã¯ã¹ã®å ¬å¼ãªã³ã©ã¤ã³å¹´æ«ã»ã¼ã«ãå§ã¾ãã¾ãããï¼ããã¯æ¬å½ãâ¦
ãã¹ã±ããã£ãã¯ãschematicããã¨ãã形容è©ã®ä½¿ãæ¹ã説æãã¾ããå å®¹ï¼ ä»£æ°æ§é ã¹ã±ããã£ãã¯ç³» ã¹ã±ããã£ãã¯ãªæ§é é 代æ°æ§é å ¸åçãªä»£æ°æ§é ã§ãã群ãèãã¦ã¿ãã¨ã群ã¯åä½å ãéå ï¼ã対å¿ãããååï¼ãäºé æ¼ç®ãä¹æ³ããæã¡ã¾ãã群ã®â¦
åã®ä¸é¨æ§é ã¯æåã°ã©ãã§ããåã«ã¯æçå°ãããã¾ãããæçå°ã«ç¸å½ããç¹å¥ãªè¾ºãåããæåã°ã©ãã¯åå°çæåã°ã©ãã¨å¼ã³ã¾ãããã£ã¦ãåã®ä¸é¨æ§é ã¯åå°çæåã°ã©ãã ã¨è¨ã£ã¦ãããã§ããããåãä¸è¬åããæ§é ã§ããä¸è¬ååãgeneralized câ¦
ãè«çãåçè«ã®åè«çæå³è«ãããï¼ ä»å¹´ãã£ã±ãããããã¾ã¨ã¾ã£ãæéãåãã«ããç¶æ³ãããã®ã§ãé·ãããã°ã¨ã³ããªã¼ã¯æ¸ãããã«ãªããçãã¨ã³ããªã¼ããã§ã³ãã§ã³ã¨æ¸ããã¨ã«ãã¾ããçãã¦å®çµããæ¸ãç©ã¯é£ããã®ã§ãç¶ãç©ã«ãªãå¯è½æ§ãâ¦
ã²ã¨ã¤åã®è¨äºãåè«ã®ã¨ã³ãã¨ã³ã¨ã³ãã¯å対ãªãã ããã«ããã¦ãâé£ç«æ¹ç¨å¼ç³»ã®è§£ç©ºéâã¨âé¢ä¿æã®åå¤éå ã«ããåéåâãå対çã ã¨ãã話ããã¾ããããã®å対æ§ã¯ã¡ãã£ã¨ä¸æè°ãªæãããã¾ããæçµçã«ã¯ãååï¼éååã®å°ï¼ã®ä¸¦è¡ãã¢ï¼ä¸¡ç«¯ãâ¦
ã¨ã³ãã¨ã³ã¨ã³ãã¯ããã®ååããå対ãªãã ããã¨ã¯èª°ã§ãæãã§ããããããããå®ç¾©ã®ä»æ¹ã«ãã£ã¦ã¯å対æ§ãè¦ãã«ãããã¨ãããã¾ãããã®è¨äºã§ã¯ãã¨ã³ãã¨ã³ã¨ã³ãã®å対æ§ãåºæ¥ãã ãè¦ãããããªããããªå®ç¾©ã¨è¨æ³ãæ示ãã¾ãã$`\newcommandâ¦
è¤åããªãã©ãããã¯ãã®ä¸é¨æ§é ã«è¤ã°ã©ããæã¡ã¾ããå°åºã·ã¹ãã ãæ¼ç¹¹ç³»ãã¯ãæ¦å¿µçã«ã¯è¤ã°ã©ããã®ãã®ã§ããè¤ã°ã©ããä¾ååçè«ã§å©ç¨ãããã¨ããè¤ã°ã©ãã«ãä¾åæ§ãå°å ¥ããå¿ è¦ãããã¾ãããã®è¨äºã§ãä¾åæ§ãæã¤è¤ã°ã©ããå°å ¥ãã¾ãâ¦
ãè«çãåçè«ã®åè«çæå³è« // å°åºã·ã¹ãã ã®åã¨åã®åãã«ããã¦ãå°åºã·ã¹ãã éã対象ã¨ããåã«è§¦ãã¾ãããããããå°åºã·ã¹ãã ã®ããã ã®æºååå°ï¼ãããåã®å°ã¨ãªãï¼ãç´ æ´ã«èãã¦ãã¦ã¯ãã©ãããã¾ããªãããã§ããå°åºã·ã¹ãã ã¯ãè¤åâ¦
ä¾ãã°ãæåã°ã©ããã©ãã«ä»ãæåã°ã©ãã®èª¬æãããã¨ããå½ç¶ã«è¨å·ç表ç¾ã使ãããã§ãã $`\mathrm{Graph}(A, B)`$ ã¨ãããµã¨ã使ã£ã¦ããè¨å·çè¡¨ç¾ $`\mathrm{Graph}(A, B)`$ ãæèããåãé¢ãã¦çºãã¦ã¿ã¾ããããæèç¡ãã§ã$`\mathrm{Graphâ¦
ä»å¹´ãã£ã±ãããããã¾ã¨ã¾ã£ãæéãåãã«ããç¶æ³ãããã®ã§ãé·ãããã°ã¨ã³ããªã¼ã¯æ¸ãããã«ãªããçãã¨ã³ããªã¼ããã§ã³ãã§ã³ã¨æ¸ããã¨ã«ãã¾ããçãã¦å®çµããæ¸ãç©ã¯é£ããã®ã§ãç¶ãç©ã«ãªãå¯è½æ§ãé«ãã§ãã$`\newcommand{\mrm}[1]{ \maâ¦