以ä¸ã®è«æãã¿ã¤ãã«ãè¦ã¦èå³ãããããã¾ãããããããã£ï¼ æã£ã¦ãã®ã¨éããã¨ãªãã¾ãããã³ã³ãã¥ã¼ã¿ãããææ¨ãåãç¥ã£ã¦ããã³ã³ãã¥ã¼ã¿ããï¼ææ¨ã¨ã¯å®ç¾©ãç°ãªãã®ã§ããããå·éã«ãªã£ã¦èããã¨ããã£ããã£ã±ãåãããã¨ãªãã¾ããã
- [Mar23-]
- Title: Computads for generalised signatures
- Author: Ioannis Markakis
- Submitted: 21 Mar 2023 (v1), 9 Jun 2023 (v2)
- Pages: 39p
- URL: https://arxiv.org/abs/2303.11978
ãã«ã«ãã¹ã®æå³ã®ææ¨ãsignatureããããªãï¼åè¦ã§ã¯ï¼ãåãç¥ã£ã¦ããææ¨ã¨ã¯ç°ãªããããã«è¦ããã®ãï¼ ã説æãã¾ãã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\id}{ \mathrm{id} }
%\newcommand{\hyp}{\text{ï¼} }
\newcommand{\NFProd}[3]{ \mathop{_{#1} \!\underset{#2}{ \times }\,\!_{#3} } }
\require{color} % Using
\newcommand{\NN}[1]{ \textcolor{orange}{\text{#1}} } % New Name
\newcommand{\NX}[1]{ \textcolor{orange}{#1} } % New EXpression
\newcommand{\T}[1]{\text{#1} }
`$
å 容ï¼
- ææ¨ã®å ·ä½ä¾ã¨æ¸ãæ¹ã®å¤ç¨®
- ææ¨ã®æ§é åã»çµç¹å
- å½¢ç¶ã¨ä»£æ°æ§é
- ãããã«
é¢é£è¨äºï¼
- ææ¨ã®çµç¹åã¨è¡¨ç¾æ¹æ³ã¨å¼ã³åã¯è²ã ã ï¼ãã®è¨äºï¼
- ææ¨ã®è©±ï¼ å½¢ç¶ã®è¨è¿°ã¨å½¢ç¶ä»ãéå
- ææ¨ã®è©±ï¼ ãã¼ã¹ãã£ã³ã°å³ã¨ãã¿ãã³ã»ããªã¼
ææ¨ã®å ·ä½ä¾ã¨æ¸ãæ¹ã®å¤ç¨®
ææ¨ã«ã¤ãã¦ã¯ãéå»è¨äºãæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 1/n åºæ¬ãããæ§é è¨è¿°ã®ããã®ææ¨ã¨åå 3/n ååãã£ã¨ããåç §ãã¦ãã ããã
æ¯åº¦æ¯åº¦ã®ã決ã¾ããªã®ã§ãããã¢ãã¤ãã®ææ¨ãä¾ã«æãã¾ããææ¨åãåé¡ååãã¨æ§æç´ å½¹å²ãåã®æåã®åºç¾ã ããªã¬ã³ã¸è²ã«ãã¾ãã
$`\T{signature }\NN{Monoid}\:\{\\
\quad \T{sort }\NX{U}\\
\quad \T{operation } \NX{m}: U\times U \to U\\
\quad \T{operation } \NX{e}: {\bf 1} \to U\\
\quad \T{equation } \NX{\mrm{assoc}} :: (m \times \id_U); m = \alpha_{U,U,U};(\id_U \times m);m\\
\quad \T{equation } \NX{\mrm{lunit}} :: \lambda_U; (e \times \id_U); m = \id_U\\
\quad \T{equation } \NX{\mrm{runit}} :: \rho_U; (\id_U \times e); m = \id_U\\
\}`$
ãã®ææ¨ã®è§£éã¯éååã§è¡ãã¨ãã¾ããã¤ã¾ããæ®éã®ã¢ãã¤ããã¢ãã«ã«ãªãã¾ãã
宣è¨ã®å é ã«ããä½ã宣è¨ãã¦ããã®ãï¼ããæ示ããããã®ãã¼ã¯ã¼ããä»ãã¦ãã¾ããsortã種å¥ããoperationãæ¼ç®ããequationãçå¼ãã§ãããã®ãã¼ã¯ã¼ãã®é¸ã³æ¹ã¯ã¾ã£ããæ£æçã§ãã次ã®ãããªãã¼ã¯ã¼ãã使ã£ã¦ãããã§ãããã
$`\T{signature }\NN{Monoid}\:\{\\
\quad \T{type }\NX{U}\\
\quad \T{function } \NX{m}: U\times U \to U\\
\quad \T{function } \NX{e}: {\bf 1} \to U\\
\quad \T{law } \NX{\mrm{assoc}} : (m \times \id_U); m = \alpha_{U,U,U};(\id_U \times m);m\\
\quad \T{law } \NX{\mrm{lunit}} :: \lambda_U; (e \times \id_U); m = \id_U\\
\quad \T{law } \NX{\mrm{runit}} :: \rho_U; (\id_U \times e); m = \id_U\\
\}`$
ä¸ã®ææ¨ã®ãã¼ã¯ã¼ã type, function, law ã¯ãææ¨ã解éããåï¼ä»ã®å ´åã¯éååï¼ã® 0-å°ã1-å°ã2-å°ã®ãã¨ãªã®ã§ã次ã®ãããªãã¼ã¯ã¼ãã使ã£ããã¨ãããã¾ãã
$`\T{signature }\NN{Monoid}\:\{\\
\quad \T{0-mor }\NX{U}\\
\quad \T{1-mor } \NX{m}: U\times U \to U\\
\quad \T{1-mor } \NX{e}: {\bf 1} \to U\\
\quad \T{2-mor } \NX{\mrm{assoc}} :: (m \times \id_U); m = \alpha_{U,U,U};(\id_U \times m);m\\
\quad \T{2-mor } \NX{\mrm{lunit}} :: \lambda_U; (e \times \id_U); m = \id_U\\
\quad \T{2-mor } \NX{\mrm{runit}} :: \rho_U; (\id_U \times e); m = \id_U\\
\}`$
å³æ°ãªããã©ããã¼ã¯ã¼ããä½è¨ãªé£æ³ã»ææ ãå¼ãèµ·ãããªããã¨ãã¡ãªããã§ãã
ä»ä½¿ã£ã¦ããæ¸ãæ¹ã ã¨ãã³ãã³ã®åæ°ã§å°ã®æ¬¡å ãå¤æã§ããã®ã§ãå°ã®æ¬¡å ã示ããã¼ã¯ã¼ãã¯åé¤ãã¦ãã¾ã£ã¦ãåé¡ããã¾ããã
$`\T{signature }\NN{Monoid}\:\{\\
\quad \NX{U}\\
\quad \NX{m}: U\times U \to U\\
\quad \NX{e}: {\bf 1} \to U\\
\quad \NX{\mrm{assoc}} :: (m \times \id_U); m = \alpha_{U,U,U};(\id_U \times m);m\\
\quad \NX{\mrm{lunit}} :: \lambda_U; (e \times \id_U); m = \id_U\\
\quad \NX{\mrm{runit}} :: \rho_U; (\id_U \times e); m = \id_U\\
\}`$
ææ¨åãåé¡ååãã®é¸æããæ§æç´ å½¹å²ãåã®é¸æãã¾ã£ããæ£æçã§ããæ¥æ¬èªã®ååãä¸ç½®æ¼ç®åè¨å·ãæ°åä¸æåã®ååããã©ã¯ãã¥ã¼ã«ä½ã®ååã使ã£ã¦ãå¥ã«ãã¾ãã¾ããã
$`\T{signature }\NN{ã¢ãã¤ã}\:\{\\
\quad \NX{A}\\
\quad \NX{(*)}: A\times A \to A\\
\quad \NX{1}: {\bf 1} \to A\\
\quad \NX{\mathfrak{as}} :: ( (*) \times \id_A); (*) = \alpha_{A,A,A};(\id_A \times (*));(*)\\
\quad \NX{\mathfrak{lu}} :: \lambda_A; (1 \times \id_A); (*) = \id_A\\
\quad \NX{\mathfrak{ru}} :: \rho_A; (\id_A \times 1); (*) = \id_A\\
\}`$
ææ¨ã®æ§é åã»çµç¹å
ææ¨ã¯å®£è¨ã並ã¹ããã®ã§ãããåã«ãã©ããã«ä¸¦ã¹ãã®ã§ã¯ãªãã¦ã°ã«ã¼ãã³ã°ãããã¨ãããã¾ããã°ã«ã¼ãã³ã°ã®ã¾ã¨ã¾ãã示ãããã«å ¥ãåã®ä¸æ¬å¼§ãããã¯ã使ã£ã¦æ¸ãã¦ã¿ã¾ã¾ãï¼é¬±é¶ãããªãã¾ããï¼ã
$`\T{signature }\NN{Monoid}\:\{\\
\: \T{sorts }\{\\
\quad \NX{U}\\
\:\}\\
\:\T{operations }\{\\
\quad \NX{m}: U\times U \to U\\
\quad \NX{e}: {\bf 1} \to U\\
\:\}\\
\:\T{equations }\{\\
\quad \NX{\mrm{assoc}} :: (m \times \id_U); m = \alpha_{U,U,U};(\id_U \times m);m\\
\quad \NX{\mrm{lunit}} :: \lambda_U; (e \times \id_U); m = \id_U\\
\quad \NX{\mrm{runit}} :: \rho_U; (\id_U \times e); m = \id_U\\
\:\}\\
\}`$
éå»è¨äºãææ¨ã¨ä»æ§ãã«ããã¦ãææ¨å ã®ã°ã«ã¼ãããã¼ããpartãã¨å¼ã³ããã¼ãåããããææ¨ãå¤ãã¼ãææ¨ãmultipart signatureãã¨å¼ã³ã¾ããã
ãã¼ãåãããããããªãããã©ã®ããã«ãã¼ãåãããããåãã¼ãããããã¯ãã«ã©ããªååãä»ããããã¾ã£ããæ£æçã§ããæ£æçãªã®ã§ããããã¼ãåãã®é¸æã¯ããã®å¾ã®å®ç¾©ãå®å¼åã«å½±é¿ãã¾ãã
æ¯è¼çã«ãã使ããããã¼ãåãã¯ããã¼ã¿ãã¼ãã¨å ¬çãã¼ãã®2ã¤ã®ãã¼ãã¸ã®åå²ã§ãã
$`\T{signature }\NN{Monoid}\:\{\\
\: \T{data }\{\\
\quad \NX{U}\\
\quad \NX{m}: U\times U \to U\\
\quad \NX{e}: {\bf 1} \to U\\
\:\}\\
\:\T{axioms }\{\\
\quad \NX{\mrm{assoc}} :: (m \times \id_U); m = \alpha_{U,U,U};(\id_U \times m);m\\
\quad \NX{\mrm{lunit}} :: \lambda_U; (e \times \id_U); m = \id_U\\
\quad \NX{\mrm{runit}} :: \rho_U; (\id_U \times e); m = \id_U\\
\:\}\\
\}`$
ãã¼ã¿ãã¼ãããææ¨ãã¨å¼ã³ãå ¬çãã¼ããå«ããã¨ãä»æ§ãã¨å¼ã¶å ´åãããã¾ãããã®å ´åããææ¨ãã®æå³ã¯çããªãã¾ãï¼å ¬çãã¼ããå«ã¾ãªãã¨ããæ¡ä»¶ãä»ãã®ã§ï¼ã
ã¢ãã¤ãã®ææ¨ãè¤åããªãã©ãããã«ããã¦è§£éããåæã ã¨ãææ¨ã®æ¸ãæ¹ãå¤ããã¾ãã
$`\T{signature }\NN{Monoid}\:\{\\
\: \T{colors }\{\\
\quad \NX{A}\\
\:\}\\
\:\T{operations }\{\\
\quad \NX{m}: (A, A) \to A\\
\quad \NX{e}: () \to A\\
\:\}\\
\:\T{axioms }\{\\
\quad \NX{\mrm{assoc}} :: (m , \id_A); m = (\id_A , m);m\\
\quad \NX{\mrm{lunit}} :: (e , \id_A); m = \id_A\\
\quad \NX{\mrm{runit}} :: (\id_A , e); m = \id_A\\
\:\}\\
\}`$
è¤åããªãã©ãããã®å¯¾è±¡ãè²ãcolor | ã«ã©ã¼ãã¨å¼ã¶ç¿æ £ãããã®ã§ããã¼ãã®ååããã¼ã¯ã¼ãã㯠colors ã«ãã¦ãã¾ããç´ç©è¨å·ã¯ä½¿ããã«ããªã¹ãã使ã£ã¦ãã¾ããç´ç© $`\times`$ ã¨çµå¯¾è±¡å ¼åä½å¯¾è±¡ $`{\bf 1}`$ ã¯ããªã¹ãã®é£æ¥ã¨ç©ºãªã¹ãã«ãã表ç¾ããã¾ãã
colorsãã¼ãã¯è²éåãset of colorsãã¨ãã¦å¥ã«æºåãã¦ãoperationsãã¼ãã¨axiomsãã¼ãã ãããææ¨ãã¨å¼ãã§ããä¾ãããã¾ãããå ¬çãã¼ããæ³åãã¼ããã¯ææ¨ã«å ¥ããªããã¨ããæµåã ã¨ãoperationsãã¼ãã ããææ¨ã§ããã©ãããææ¨ãã¨å¼ã¶ãããã©ãã©ãªãã§ãã
å½¢ç¶ã¨ä»£æ°æ§é
åé ã§è§¦ãããã«ã«ãã¹ãIoannis Markakisãã®ææ¨ã§ãããå½¼ãã©ã®é¨åããææ¨ãã¨å¼ãã§ãããã説æããããã®ä¾ã¨ãã¦åã®ææ¨ãåãä¸ãã¾ãããã ããåã®æ³åãå ¬çãã¯é¤ãããã®ã§ããç¾æç¹ã§ããã«ã«ãã¹ãæ³åãã©ãæ±ã£ã¦ãããããåãããªãã®ã§ã
$`\T{signature }\NN{LawlessCategory}\:\{\\
\quad \T{sort } \NX{O}\\
\quad \T{sort } \NX{M}\\
\quad \T{operation } \NX{\mrm{dom}} : M \to O\\
\quad \T{operation } \NX{\mrm{cod}} : M \to O\\
\quad \T{operation } \NX{\mrm{id}} : O \to M\\
\quad \T{operation } \NX{\mrm{comp}} : M \NFProd{\mrm{cod}}{O}{\mrm{dom}} M \to M\\
\}`$
$`M \NFProd{\mrm{cod}}{O}{\mrm{dom}} M`$ ã¯ãã³ã¹ãã³ã«å¯¾ãããã¡ã¤ãã¼ç©ã表ãã¾ãã
ãã¦ããã«ã«ãã¹ã®æµåã ã¨ãæ³åç¡ãåã®ææ¨ã次ã®ããã«ãã¼ãåããã¾ãã
$`\T{signature }\NN{LawlessCategory}\:\{\\
\:\T{shape }\{\\
\quad \T{sort } \NX{O}\\
\quad \T{sort } \NX{M}\\
\quad \T{face } \NX{\mrm{dom}} : M \to O\\
\quad \T{face } \NX{\mrm{cod}} : M \to O\\
\:\}\\
\:\T{algebra }\{\\
\quad \T{operation } \NX{\mrm{comp}} : M \NFProd{\mrm{cod}}{O}{\mrm{dom}} M \to M\\
\quad \T{operation } \NX{\mrm{id}} : O \to M\\
\:\}\\
\}`$
åã¯æåã°ã©ããå°ãunderlying thingãã¨ãã¦ããã®ä¸ã«çµåæ¼ç®ã¨æçãåä½ããè¼ã£ã¦ãã代æ°ç³»ã ã¨èãããã¾ããshapeãã¼ãã§å°ã¨ãªãã°ã©ãæ§é ãè¨è¿°ãã¦ãalgebraãã¼ãã§ã¢ãã¤ãé¡ä¼¼ã®æ¼ç®éãè¨è¿°ãã¦ãã¾ãã
ãã«ã«ãã¹ã¯ãshapeãã¼ãã¯åãé¢ãã¦å¥ã«å®ç¾©ãã¦ãalgebraãã¼ãï¼ä½ããã®æ¹æ³ã§æ³åãå«ããã®ããï¼ããææ¨ãã¨å¼ãã§ããã®ã§ããåç¯ã®æå¾ã®ä¾ã§ãè²éåãåãé¢ãã¦ããã®ã§ãåããããªçºæ³ã§ãã
ã¡ãã£ã¨åããã«ããã®ã¯ããã«ã«ãã¹ã¯shapeãã¼ãããã½ã¼ããã¨å¼ãã§ããã®ã§ãããï¼åºç¾©ã®ï¼ã½ã¼ãããã¼ããããã«ãï¼ç義ã®ï¼ã½ã¼ããã®å®£è¨ã¨é¢ååãfaceãã®å®£è¨ã«åããããã¨ã«ãªãã¾ããããã§ã¯ããã½ã¼ãï¼ãã«ã«ãã¹ã®ç義ã®ã½ã¼ãããã·ã§ã¼ããå½¢ç¶ãï¼ãã«ã«ãã¹ã®åºç¾©ã®ã½ã¼ããã¨ãã¾ãã
æ³åç¡ãåã®ä¾ã ã¨ã代æ°æ¼ç®ï¼ã®ååï¼ã2ã¤ï¼$`\mrm{comp}`$ 㨠$`\mrm{id}`$ï¼ãããªãã®ã§ãâåé¡ããâã¨è¨ã£ã¦ããã¾ãæå³ããªãã®ã§ããã代æ°æ¼ç®ã¯ä½åã®ã½ã¼ãã«ãã£ã¦åé¡ããã¾ãã
ã½ã¼ãï¼ãã«ã«ãã¹ã®ç義ã®ã½ã¼ãï¼ã®éåã $`S`$ ã¨ãã¦ãææ¨ $`\Sigma`$ ã«ç¾ãããã¹ã¦ã®ä»£æ°æ¼ç®ã®ååãè¨å·ãã®éåã $`\mrm{OpSym}(\Sigma)`$ ã¨ãã¾ããâåé¡ããâã¨ã¯ãéå $`\mrm{OpSym}(\Sigma)`$ ã次ã®ãããªã¤ã³ããã¯ã¹ä»ãéåæãindexed family of setsãã®å½¢ã«æ¸ããã¨ã§ãã
$`\quad (\mrm{OpSym}(\Sigma)_s)_{s\in S}\\
\text{Where}\\
\quad \mrm{OpSym}(\Sigma)_s \subseteq \mrm{OpSym}(\Sigma) \text{ for }s\in S\\
\quad \mrm{OpSym}(\Sigma)_s \cap \mrm{OpSym}(\Sigma)_t = \emptyset \text{ if } s \ne t\\
\quad \bigcup_{s\in S}\mrm{OpSym}(\Sigma)_s = \mrm{OpSym}(\Sigma)
`$
ãã®ã¨ãã$`\mrm{OpSym}(\Sigma)_s`$ ã¯ãä½åï¼å¤ãã¨ã対象ï¼ã®ã½ã¼ãã $`s \in S`$ ã§ãããããªæ¼ç®è¨å·ã®éåã¨ãã¦å®ç¾©ããã¾ãã
ãããã«
ãææ¨ãããã½ã¼ããããã·ã§ã¼ããããä»æ§ããªã©ã®è¨èã®ä½¿ãæ¹ã¯ãã»ãã¨ã«è²ã ãªãã§ããããããã«é¢ããããçæç³»ããããã¬ã¼ã³ãã¼ã·ã§ã³ãããã³ã³ããã¹ãããã代æ°ãããã¢ãã«ããã表ç¾ãrepresentationããããã³ã³ãã¥ã¼ã¿ãããããã»ãªãªã¼ãããå³å¼ãããã»ã«ããããã¹ãããé ããªã©ã®è¨èãå¤ç¾©ææ§ã§ã人ã«ããå ´åã«ããä½ãæããã¯ãã©ãã©ã§ãã
ã¨ããããããã«ã«ãã¹ã¯ãã·ã§ã¼ãã®è¨è¿°ã¯åãé¢ãã¦ã代æ°æ¼ç®ï¼ã²ãã£ã¨ãã¦ä»£æ°æ³åãï¼ã®è¨è¿°ã ãããææ¨ãã¨å¼ãã§ããã®ã¯åããã¾ããã次ã¯ããã«ã«ãã¹ã®ãã³ã³ãã¥ã¼ã¿ãããã¨ã代æ°ããä½ãæãã¦ãããï¼ ã ãã