é«æ¬¡åã®å°éã®çµã¿åããã表ç¾ããæ¹æ³ã®ã²ã¨ã¤ã¨ãã¦ããã¼ã¹ãã£ã³ã°å³ãããã¾ãããã¼ã¹ãã£ã³ã°å³ã¯ãããã¹ãå½¢å¼ã«æ¸ãåããã¨ãã§ãã¾ãããã¼ã¹ãã£ã³ã°å³ã¨ããã¹ãå½¢å¼ã®ä¸éã®å½¢å¼ã¨ãã¦ããã¿ãã³ã»ããªã¼ãããã¾ãããã¿ãã³ã»ããªã¼ã¯ã¨ã¦ã便å©ã ã¨æãã®ã§ç´¹ä»ãã¾ãã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
%\newcommand{\cat}[1]{ \mathcal{#1} }
%\newcommand{\In}{\text{ in }}
%\newcommand{\id}{ \mathrm{id} }
\newcommand{\twoto}{ \Rightarrow }
%\newcommand{\op}{ \mathrm{op} }
\newcommand{\hyp}{\text{ï¼} }
%%
\require{color} % Using
\newcommand{\NN}[1]{ \textcolor{orange}{\text{#1}} } % New Name
\newcommand{\NX}[1]{ \textcolor{orange}{#1} } % New EXpression
\newcommand{\T}[1]{\text{#1} }
`$
å 容ï¼
- ãã¼ã¹ãã£ã³ã°å³ã¨ãããã¡ã¤ã«ãã¹
- ãã¿ãã³ã»ããªã¼
- ãã¿ãã³ã»ããªã¼ã®ã©ããªã³ã°
- ãã¿ãã³ã»ããªã¼ã¨ææ¨
ããè¨äºï¼
ãã¼ã¹ãã£ã³ã°å³ã¨ãããã¡ã¤ã«ãã¹
次ã¯ãï¼çä½å½¢ç¶ã®ãglobularãï¼2次å ãã¼ã¹ãã£ã³ã°å³ã®ä¸ä¾ã§ãã
$`\quad \xymatrix@C+1pc{
A
\ar@/^1.2pc/[r]^{f}_{\alpha}
\ar[r]|{f'}
\ar@/_1.2pc/[r]^{\alpha'}_{f''}
&B
\ar[r]^{g}
&C
\ar@/^0.8pc/[r]^{h}
\ar@{}[r]|{\beta}
\ar@/_0.8pc/[r]_{h'}
&D
}`$
2-å°ã2-ã»ã«ãã®ç¢å°ãæãã¦ã¾ããããæ¹åã¯ä¸ããä¸ã§ããã©ãã«ãååãã®ç´æã¯ï¼
- 0-å°ã®ã©ãã«ã¯ã©ãã³æå大æå
- 1-å°ã®ã©ãã«ã¯ã©ãã³æåå°æå
- 2-å°ã®ã©ãã«ã¯ã®ãªã·ã£æåå°æå
ãã®ãã¼ã¹ãã£ã³ã°å³ã®ä¸é¨ï¼å ¨é¨ã§ã¯ãªãï¼ãããã¹ãå½¢å¼ã«æ¸ãåãã¦ã¿ãã¨ï¼
$`\quad \alpha :: f \twoto f'\\
\quad f, f' : A \to B\\
\quad \beta :: h \twoto h'
`$
ããã§ãç¢å°ã§åºåãããã㢠$`f\twoto f'`$ ã $`A \to B`$ ã¯ãããã¡ã¤ã«ãprofileãã¨å¼ã³ã¾ãããããã¡ã¤ã«ã¯ãå°ï¼ä»ã®å ´åã¯1-å°ã¨2-å°ï¼ã®åã¨ä½åã®ä»æ§ã表ãã¾ãã
ä¸è¨ã®æåã®2è¡ã®æ å ±ã¯1è¡ã«ã¾ã¨ãã¦æ¸ããã¨ãã§ãã¾ãã
$`\quad \alpha :: f \twoto f' : A \to B\\
\quad \beta :: h \twoto h'
`$
è¤æ°ã®ãããã¡ã¤ã«ãç¹ãã¦æ¸ãã $`f \twoto f' : A \to B`$ ã®ãããªå½¢å¼ã¯ãããã¡ã¤ã«ãã¹ãprofile pathãã¨å¼ã¶ãã¨ã«ãã¾ãããã ãé常ã¯ããããã¡ã¤ã«ãã¹ãåã«ãããã¡ã¤ã«ã¨å¼ã³ã¾ããç¹ã«ãè¤æ°ã®ãã¢ãç¹ãã¦ããããã¨ã強調ãããã¨ãã«ããã¹ããä»ããã ãã§ãããã¹å½¢å¼ã®ãããã¡ã¤ã«ã«é¢ãã¦ã¯ä»¥ä¸ã®éå»è¨äºã§ãæ¸ãã¦ãã¾ãã
ã©ãã«ã¨ãããã¡ã¤ã«ãã¹ãå ¨é¨åæããã°ããã¼ã¹ãã£ã³ã°å³ã®ããã¹ã表ç¾ã«ãªãã¾ãã
$`\quad \alpha : f \twoto f' : A \to B\\
\quad \alpha' : f' \twoto f'' : A \to B\\
\quad g : B \to C\\
\quad \beta :: h \twoto h' : C \to D
`$
ãææ¨ã®çµç¹åã¨è¡¨ç¾æ¹æ³ã¨å¼ã³åã¯è²ã ã // ææ¨ã®å ·ä½ä¾ã¨æ¸ãæ¹ã®å¤ç¨®ãã§ç´¹ä»ããææ¨æ§æï¼ã®ã²ã¨ã¤ï¼ã§æ¸ãä¸ãã°ä»¥ä¸ã®ããã§ã*1ãææ¨åã¯ãã¤ãã³ï¼ç¡åï¼ã¨ãã¦ãã¾ãã
$`\T{signature }\hyp \:\{\\
\quad \T{0-mor } \NX{A, B, C, D}\\
\quad \T{1-mor } \NX{f, f', f''} : A \to B\\
\quad \T{1-mor } \NX{g} : B \to C\\
\quad \T{1-mor } \NX{h, h'} : C \to D\\
\quad \T{2-mor } \NX{\alpha} :: f \twoto f' : A \to B\\
\quad \T{2-mor } \NX{\alpha'} :: f' \twoto f'' : A \to B\\
\quad \T{2-mor } \NX{\beta} :: h \twoto h' : C \to D\\
\}
`$
ãã¿ãã³ã»ããªã¼
ãã¿ãã³ã»ããªã¼ã«ã¤ãã¦ã¯æ¬¡ã®è«æã§ç¥ãã¾ããã
- [FM17-]
- Title: A Type-Theoretical Definition of Weak Ï-Categories
- Authors: Eric Finster, Samuel Mimram
- Submitted: 9 Jun 2017
- Pages: 12p
- URL: https://arxiv.org/abs/1706.02866
p.7 ã® "Batanin trees" ã®ç¯ã«ãã¿ãã³ã»ããªã¼ã«ã¤ãã¦æ¸ãã¦ããã¾ãã
ãã¿ãã³ã»ããªã¼ã¯ããã¼ã¹ãã£ã³ã°å³ãããã¹ãå½¢å¼ã®ææ¨ã¨åãæ å ±ãæã¡ã¾ãããã¿ãã³ã»ããªã¼ãï¼çä½å½¢ç¶ã®ï¼ãã¼ã¹ãã£ã³ã°å³ã¨åæ§ã«ãçµã¿åããå¹¾ä½ç対象ç©ãcombinatorial-geometric objectãã§ããããã¼ã¹ãã£ã³ã°å³ã«æ¯ã¹ã¦ãã£ã¨æ§é ãç°¡åã§ããã¾ããçµµå³çãpictorial | graphical | diagrammaticããªè¡¨ç¾ãªã®ã§ããã¹ãæ§æãå®ç¾©ããå¿ è¦ãããã¾ãããç´ æ´ãããã
ãã¿ãã³ã»ããªã¼ã¯æéæåã°ã©ãã¨ãã¦ã®å½¢ç¶ã¨ã©ãã«ä»ããlabelingããæã¡ã¾ããã¾ããæéæåã°ã©ãã¨ãã¦ã®å½¢ç¶ã«ã¤ãã¦ãã®ç¯ã§èª¬æãã¾ãã
æéå¹³é¢ããªã¼ãfinite planar treeãããé«ãä»ãã®ãã¼ããé ç¹ãã®éåã¨è¦ªåé¢ä¿ã§å®ç¾©ãã¾ããããæéå¹³é¢ããªã¼ã¯æ¬¡ã®æ§æç´ ã¨æ¡ä»¶ãããªãã¾ãã
- $`V`$ ã¯æééåããã®è¦ç´ ããã¼ããnodeãã¾ãã¯é ç¹ãvertexãã¨å¼ã¶ã
- $`\mrm{h} : V \to {\bf N}`$ ã¯ååãé«ãé¢æ°ãheight functionãã¨å¼ã¶ãéå $`\mrm{h}^{-1}(k)`$ ã $`V_k`$ ã¨æ¸ãã
- $`V_0`$ ã¯åå éåãå¯ä¸ã®è¦ç´ ãã«ã¼ããrootãã¨å¼ã¶ã
- èªç¶æ° $`k`$ ãã¨ã«åå $`\mrm{par}_k : V_{k+1} \to V_k`$ ã$`\mrm{par}_k(x)`$ ãããã¼ã $`x`$ ã®è¦ªãã¼ããparent nodeãã¨å¼ã¶ã
- $`x\in V_k`$ ã«å¯¾ãã¦ã$`\mrm{Chil}(x) := {\mrm{par}_k}^{-1}(x)`$ ãããã¼ã $`x`$ ã®åãã¼ãéã®éåãset of {children | child nodes}ãã¨å¼ã¶ã
- ãã¹ã¦ã® $`x\in V`$ ã«å¯¾ãã¦ãéå $`\mrm{Chil}(x)`$ ä¸ã«å ¨é åºæ§é $`\le_x`$ ï¼å å¼é åºãsibling orderãï¼ãæå®ããã¦ããã$`\mrm{Chil}(x)`$ ã空éåã®ã¨ãã¯ãèªæãªå ¨é åºæ§é ãããã¨ã¿ãªãã
$`\mrm{par}_k`$ ã®ä¸ä»ã $`k`$ ã$`\le_x`$ ã®ä¸ä»ã $`x`$ ã¯ãæ··ä¹±ã®ãããããªããã°çç¥ãã¾ãã
ã㢠$`(x, \mrm{par}(x))`$ éã®éåã $`E`$ ã¨ãã¦ããã¢ã®ç¬¬ä¸æåï¼ç¬¬äºæåãåãååã $`\mrm{src}, \mrm{trg}`$ ã¨ããã¨ã$`(V, E, \mrm{src}, \mrm{trg})`$ ã¯ã°ã©ããæåã°ã©ããã«ãªãã¾ããèªå·±ã«ã¼ã辺ãå¤é辺ãæããªãæéã°ã©ãã§ãã辺ã®åãã¯åãã¼ããã親ãã¼ãã«åããã¾ããããªã¼ã®å ´åã¯ã辺ãæã¨ãå¼ã³ã¾ãã
æéå¹³é¢ããªã¼ $`(V, \mrm{h}, \mrm{par}, \le)`$ ã¯ã$`V`$ ãæéã§ãããé«ãã¨å å¼é åºãããã®ã§ã座æ¨å¹³é¢ $`{\bf R}^2`$ ã¸ã®å ·ä½çãªæåºãrenderingãã容æã§ããæãæ¹ã®ããããå°ãªããªãããã«ã次ã®ç´æããã¾ãããã
- ã«ã¼ããä¸çªä¸ã§ãé«ãã大ããªãã¼ãã»ã©ä¸ã«æãã
- åãé«ãã®ãã¼ãã¯ãã ãããåãy-座æ¨ã«ãªãããã«æãã
- å å¼é åºã¯å·¦ããå³ã¸ã¨æãã
次ã¯ãXyJaxï¼ãã®ããã°ã®å³å¼æç»ã«ä½¿ã£ã¦ãããã¼ã«ï¼ã§æããæéå¹³é¢ããªã¼ã®ä¸ä¾ã§ãã
$`\quad \xymatrix{
{\bullet} \ar@{-}[dr]
\ar@{.}[rrrrr]
&{}
&{\bullet} \ar@{-}[dl]
&{}
&{\bullet} \ar@{-}[d]
&{2}
\\
{}
\ar@{.}[rrrrr]
&{\bullet} \ar@{-}[drr]
&{}
&{\bullet}\ar@{-}[d]
&{\bullet}\ar@{-}[dl]
&{1}
\\
{}
\ar@{.}[rrrrr]
&{}
&{}
&{\bullet}
&{}
&{0}
}`$
横æ¹åã®ç¹ç·ã¯é«ãã示ãããã®è£å©ç·ã§ãããªã¼ã®ä¸é¨ã§ã¯ããã¾ããã
ä¸ã«åããæãåºã¦ãªããã¼ãã¯ãªã¼ããã¼ããleaf nodeãã¨å¼ã³ã¾ãã親åé¢ä¿ã§è¨ãã°ãåãã¼ããæããªããã¼ãããªã¼ããã¼ãã§ãã
次ç¯ã§ãã¿ãã³ã»ããªã¼ã®ã©ããªã³ã°ã«ã¤ãã¦èª¬æãã¾ãã
ãã¿ãã³ã»ããªã¼ã®ã©ããªã³ã°
ãã¿ãã³ã»ããªã¼ã®å½¢ç¶ã¯ãåç¯ã§è¿°ã¹ããããªæéå¹³é¢ããªã¼ã§ããããã ãã ã¨ä½ã®å¤å²ããªãããªã¼ã«éãã¾ããããã¿ãã³ã»ããªã¼ããã¿ãã³ã»ããªã¼ããããã¦ããæ§é ã¯ãã®ã©ããªã³ã°ã§ãããã¼ããæã辺ãã«ã©ãã«ãä»ããã®ã§ã¯ãªãã¦ãã¨ãªã¢ãé åãã«ã©ãã«ãä»ãã¾ãã
åç¯ã®ç´æã«ããã座æ¨å¹³é¢ $`{\bf R}^2`$ ã¸ã¨æåºãrenderingãããå¹¾ä½ã°ã©ãã§èãã¾ããåãã¼ãï¼ã表ãç¹ï¼ãä¸å¿ã¨ãã¦ãé©å½ãªåå¾ã®ååæ¿ãæãã¾ãã$`(a, b)`$ ãä¸å¿ã¨ããåå¾ $`\varepsilon \gt 0`$ ã®ååæ¿ã®å ·ä½çãªå®ç¾©ã¯ä»¥ä¸ã®ããã§ãã
$`\quad \{(x,y)\in {\bf R}^2\mid (x -a)^2 + (y - b)^2 \le \varepsilon^2 \land y \ge b \}`$
åå¾ $`\varepsilon`$ ã¯ãä»ã®ãã¼ããæãååæ¿ã«å ¥ããã¾ãªããããªå¤ã«è¨å®ãã¾ããããªã¼ã®æã¯ç·åã§æãã¨ããã¨ãååæ¿ã¯ $`l`$ æ¬ã®æ㧠$`(l + 1)`$ åã®ãã¤ã¨ãªã¢ãpie areaãã«åå²ããã¾ããæ··ä¹±ãé¿ããããã«ããã¤ã¨ãªã¢ã¯å¢çãå«ã¾ãªããééåã§ãããã¨ãã¦ããã¾ãããªã¼ããã¼ãã§ã¯ãååæ¿ã®å é¨ã1åã®ãã¤ã¨ãªã¢ã§ãã
ãã¿ãã³ã»ããªã¼ã®ã©ãã«ã¯ããã¼ãã§ãæã辺ãã§ããªããä»èª¬æãããã¤ã¨ãªã¢ï¼ååæ¿å é¨ã§ãããï¼ã«ä»ãã¾ããããååæ¿ããã¤ã¨ãªã¢ãå¾åã«æãã®ã¯ï¼æç»ãã¼ã«ã®é½åããã£ã¦ï¼é¢åãªã®ã§ã次ã®ç´æããã¾ãã
- ãã¤ã¨ãªã¢ãååæ¿å é¨ã®ã¨ãã¯ãã©ãã«ããã¼ãã®ã©ãã«ã®ããã«æãã¦ããã
- æã§åå²ããããã¤ã¨ãªã¢ã®ã©ãã«ã¯ãæã®å·¦å´ã¾ãã¯æã®å³å´ã®ã©ãã«ã¨ãã¦æãã¦ããã
ãã®æ¹å¼ã§ãåç¯ã®ããªã¼ã«ã©ããªã³ã°ãã¦ã¿ã¾ãã
$`\quad \xymatrix{
{\alpha\,\bullet} \ar@{-}[dr]_{f}^{f'}
\ar@{.}[rrrrr]
&{}
&{\alpha'\, \bullet} \ar@{-}[dl]^{f''}
&{}
&{\beta \, \bullet} \ar@{-}[d]_{h}^{h'}
&{2}
\\
{}
\ar@{.}[rrrrr]
&{\bullet} \ar@{-}[drr]_{A}^{B}
&{}
&{g\, \bullet }\ar@{-}[d]^{C}
&{\bullet}\ar@{-}[dl]^{D}
&{1}
\\
{}
\ar@{.}[rrrrr]
&{}
&{}
&{\bullet}
&{}
&{0}
}`$
æéå¹³é¢ããªã¼ã®å½¢ç¶ã¨ããã¤ã¨ãªã¢ã¸ã®ã©ããªã³ã°ãããªãæ§é ããã¿ãã³ã»ããªã¼ãBatanin treeãã§ããä¸è¨ã®ãã¿ãã³ã»ããªã¼ã¯ãæåã«æãããã¼ã¹ãã£ã³ã°å³ã¨åãæ å ±ãæã£ã¦ãã¾ãã
ãã¿ãã³ã»ããªã¼ã¨ææ¨
ãã¿ãã³ã»ããªã¼ãããã¹ãå½¢å¼ã®ææ¨ã«æ¸ãåãã®ã¯é常ã«ç´æ¥çã§ç´æçã§ãã
ãã¿ãã³ã»ããªã¼ã®ä»»æã®ãã¤ã¨ãªã¢ã«æ³¨ç®ãã¾ããä¾ãã°ãåç¯ã®ãã¿ãã³ã»ããªã¼ã®ãã¤ã¨ãªã¢ $`f'`$ ã«æ³¨ç®ãã¾ãã次ã«ããã¤ã¨ãªã¢ã®ä¸å¿ã§ãããã¼ãã«æ³¨ç®ãã¾ãããã®å¾ã§ãå½è©²ãã¼ãããåºã¦ããæï¼è¦ªã«åããæï¼ã®å·¦å³ã®ãã¤ã¨ãªã¢ã«æ³¨ç®ãã¾ãããããã®æ å ±ããå°ãã»ã«ãã®ãããã¡ã¤ã«ãä¸ãã¾ãã
- ãã¤ã¨ãªã¢ï¼ 注ç®ããå°ãã©ãã«ã¯å°ã®åå
- ãã¼ãï¼ ãã®é«ããå°ã®æ¬¡å
- æã®å·¦å´ã®ãã¤ã¨ãªã¢ï¼ å°ã®å
- æã®å³å´ã®ãã¤ã¨ãªã¢ï¼ å°ã®ä½å
ãã¤ã¨ãªã¢ $`f'`$ ãããããã¡ã¤ã«ãæ½åºããã¨ï¼
$`\quad f': A \to B`$
ã³ãã³ã®åæ°ã¨ç¢å°ã®â太ãâã¯ã次å ãé«ããã«åããã¦èª¿æ´ãã¾ãã
ãã¿ãã³ã»ããªã¼ã®ä¸çªå³ãä¸çªä¸ã®ãã¤ã¨ãªã¢ $`\beta`$ ã«æ³¨ç®ããã°ã次ã®ãããã¡ã¤ã«ãæ½åºã§ãã¾ãã
$`\quad \beta :: h \twoto h'`$
ããªã¼ãä¸ã¸ã¨ï¼ã«ã¼ãã®ã»ãã«ï¼ãã©ã£ã¦ããã°ããããã¡ã¤ã«ãã¹ãæ¸ãä¸ãã¾ãã
$`\quad \beta :: h \twoto h' : C \to D`$
ããã¹ãå½¢å¼ã®ææ¨ã§ã¯ã次å ãä½ãã»ãããå°ãå ¨é¨åæããã®ã§ããã¿ãã³ã»ããªã¼ãã«ã¼ãããä¸ã«åãã£ã¦è¦ã¦ããã¾ããã«ã¼ããæã¤ãã¤ã¨ãªã¢ã®æ å ±ã次å ä»ãã§å ¨é¨æ¸ãåºãã¨ï¼
$`\quad \T{0-mor }A\\
\quad \T{0-mor }B\\
\quad \T{0-mor }C\\
\quad \T{0-mor }D
`$
ãããã¯ã
$`\quad \T{0-mor }A, B, C, D`$
次å ã 1 ã§ãã3ã¤ã®ãã¼ãã«é¢ãã¦ãã¤ã¨ãªã¢ã®æ å ±ãå ¨é¨æ¸ãåºãã¨ï¼
$`\quad \T{1-mor }f, f', f'' : A \to B\\
\quad \T{1-mor }g : B \to C\\
\quad \T{1-mor }h, h' : C \to D
`$
次å ã 2 ã§ãã3ã¤ã®ãã¼ãã«é¢ãã¦ãã¤ã¨ãªã¢ã®æ å ±ãå ¨é¨æ¸ãåºãã¨ï¼
$`\quad \T{2-mor }\alpha :: f \twoto f' : A \to B\\
\quad \T{2-mor }\alpha' :: f' \twoto f'' : A \to B\\
\quad \T{2-mor }\beta : h \twoto h' : B \to C
`$
ãã¼ã¹ãã£ã³ã°å³ã«æ¯ã¹ã¦ãå¹³é¢ããªã¼ã¯è¾¿ãæ¹ãtraversal | ãã©ãã¼ãµã«ãã®é åºãæ確ã§åãããããã®ã§ãããã¹ãå½¢å¼ã¸ã®ã·ãªã¢ã©ã¤ãºã楽ã¡ãã§ããã³ã³ãã¥ã¼ã¿å¦çã®ãã¼ã¿æ§é ã¨ãã¦ãã¿ãã³ã»ããªã¼ãæ¡ç¨ããã°ããã¼ã¿æ§é ã®ä»æ§ãå¦çã®å®è£ ã楽ã¡ãã§ãã
ãã¿ãã³ã»ããªã¼ã楽ã¡ãã§ããã§ããã
*1:ååºã®ååãã©ãã«ããåºåãã«ã³ãã¯é»ã®ã»ããããã£ãã¨æãã¾ãããé¢åãªã®ã§ã«ã³ããå«ãã¦è²ä»ããã¦ã¾ãã