ã©ã ãè¨ç®ã¯ãè¨ç®ã¢ãã«ã¨ãã¦ã ãã§ãªããæè¨ç®ã®å®éçæ段ã¨ãã¦ãå½¹ç«ã¡ã¾ããããããé常使ãããå種å¤æï¼ã¢ã«ãã¡ããã¼ã¿ãã¤ã¼ã¿ããã«ã¿ï¼ã§ã¯ãã¾ãè¨ç®ãé²ã¾ãªãã¨ããããã¾ããä¾ãã°ãgãfã®éé¢æ°ã®ã¨ããf(g(y)) 㯠y ã«ç°¡ç´ãããã®ã ãã©ãf(g(y)) â y ã£ã¦ç°¡ç´è¦åã¯é常ã®ã©ã ãè¨ç®ã§ã¯ãã¾ãå®å¼åã§ãã¾ããï¼ãããã§ããããããã¾ããããåã«ã¯ãã¾ãæ¹æ³ãæãã¤ãã¾ããï¼ã
ããã§ãã©ã ãè¨ç®ã«å ãã¦ã¤ãã·ãã³è¨ç®ã使ãã¨ããããã§ããã§ããã¤ãã·ãã³è¨ç®ã¯ãã©ã ãè¨ç®ã»ã©ã«ããã¥ã©ã¼ã§ã¯ãªãã§ãããç°¡åãªä¾ã§ã¤ãã·ãã³è¨ç®ãç´¹ä»ãã¾ãããã
å 容ï¼
- ã¤ãã·ãã³è¨å·ã¨ã¤ãã·ãã³é
- ã¤ãã·ãã³é ã®æå³
- ã¤ãã·ãã³é ãå®ç¾©ããé¢æ°
- ä¾é¡ï¼gãfã®æé¢ï¼ã»ã¯ã·ã§ã³ï¼ã§ãããã¨
ã¤ãã·ãã³è¨å·ã¨ã¤ãã·ãã³é
è² ã®æ°-1ã¨ããç¡çæ°â2ã¨ããå°å ¥ããã¨ãã次ã®ãããªå®ç¾©ããã¾ããããã
- -1ã¨ã¯ãx + 1 = 0 ã§ãããããªx
- 2ã®å¹³æ¹æ ¹ã¨ã¯ãx2 = 2 ã§ãããããªxï¼ã®ã²ã¨ã¤ï¼
- â2ã¨ã¯ãx2 = 2 ã㤠x ⧠0 ã§ãããããªx
ããã§ããâ¦ã§ãããããªxãã¨ãã表ç¾ãç»å ´ãã¾ããããããεx.(â¦) ã¨æ¸ãã¾ããã¤ã¾ãã
- -1 = εx.(x + 1 = 0)
- 2ã®å¹³æ¹æ ¹ = εx.(x2 = 2)
- â2 = εx.(x2 = 2 ⧠x ⧠0) ï¼â§ã¯è«çANDã§ãï¼
ãâ¦ã§ãããããªxããεx.(â¦) ã®ãâ¦ãã®é¨åã¯ããªã«ãxãå«ãå½é¡ã§ãããã®å½é¡ãP(x)ã¨æ¸ãã¨ããP(x)ã§ãããããªxãããεx.P(x) ã¨æ¸ããã¨ã«ãªãã¾ãã
ããããã§ãã¤ãã·ãã³è¨å·ã¨ã¤ãã·ãã³é ã®èª¬æã¯çµããã§ãã念ã®ããã¡ããã¨è¨ã£ã¦ããã°ï¼
- ãâ¦ã§ãããããªxãã®æå³ã§ä½¿ããεããã¤ãã·ãã³è¨å·ã¨å¼ã¶ã
- å½é¡P(x)ã®åã«ã¤ãã·ãã³è¨å·ãä»ããå½¢ εx.P(x) ãã¤ãã·ãã³é ã¨å¼ã¶ã
å¤æ°xã®ååï¼ç¶´ãï¼ã«æå³ã¯ãªãã®ã§ãεx.P(x) ã εy.P(y) ã¨æ¸ãã¦ãåãã§ããããã¯ãã©ã ãå¼ã®ã¢ã«ãã¡å¤æã¨åãã§ããã¤ãã·ãã³ã®ç´å¾ã«ä»ãå¤æ°ï¼ã¤ãã·ãã³å¤æ°ã¨å¼ã³ã¾ãããï¼ã¯æç¸å¤æ°ã§ããæç¸æ©æ§ããè¿°èªè«çå¼ãã©ã ãå¼ã¨åãã§ãã
ã¤ãã·ãã³é ã®æå³
εx.(x + 1 = 0) ã®å ´åããã®ã¤ãã·ãã³é ã-1ã表ããã¨ã¯ç´è¦³çã«æãã§ãï¼ãã以ä¸ã¯è©®ç´¢ããªãï¼ãããããεx.(x2 = 2) ã®ã¨ããx2 = 2 ã§ããxã¯ï¼ã¤ããã¾ããã©ã£ã¡ã表ãã®ã§ãããï¼ ã¾ããxãå®æ°ã®ç¯å²ã§åãã¨ããεx.(x2 = -1) ã¯ä½ã表ãã¾ããããxã®ç¯å²ãè¤ç´ æ°ã¾ã§æ¡ãããã ãã£ã¦ï¼ ã§ã¯ãεx.(x â x) ãªãã©ãã§ãããï¼
å®ã¯ãP(x)ãã©ããªå½é¡ã§ããεx.P(x) ã®æå³ãå®ç¾©ã§ããã®ã§ããã話ãç ©éã«ããªãããã«ãâx.P(x) ãä¿è¨¼ããã¦ããããâx.P(x) ãåæã¨ããå ´åã«ã ããεx.P(x) ã使ã£ã¦ããã¨ç´æãã¾ãããã
ããããã¨ãεx.P(x)ãã¤ã¾ããP(x)ã§ãããããªxãã¯1ã¤ä»¥ä¸åå¨ãã¾ããåé¡ã¯ãè¤æ°ã®xãããã¨ãã©ããé¸ã¶ãã§ãããã®åé¡ã®çã¯ãã©ãã§ããããããã©ãã1ã¤ãé¸ã¶ãã§ãããããªã¢ã¤ãã¤ãªå®ç¾©ã§å¤§ä¸å¤«ãï¼ å¤§ä¸å¤«ã§ããåé¡ããã¾ããã
大äºãªãã¨ã¯ãP(x) ã®xã®ã¨ãã㫠εx.P(x) ãä»£å ¥ããããããã¯çãªå½é¡ã«ãªããã¨ã§ããã¤ã¾ãã次ã®å½¢ã®å½é¡ã¯å¸¸ã«æç«ãã¾ãã
- P(εx.P(x))
ä¾ãæããã¨ï¼
- εx.(x + 1 = 0) + 1 = 0
- (εx.(x2 = 2))2 = 2
ããã¯ã次ã®ãã¨ãè¨ã£ã¦ãã¾ãã
- (-1) + 1 = 0
- (â2)2 = 2
ãã£ã¨ããäºçªç®ã¯ â2 ãããªã㦠-â2 ã ã¨æã£ã¦ããã¾ãã¾ããã+â2 㨠-â2 ãåºå¥ããå¿ è¦ã¯ããã¾ãããã©ã£ã¡ã«ãããäºä¹ããã°2ãã§ãããã
ã¤ãã·ãã³é ã«ååãä»ãã¦ããã¦ããã®ååã使ã£ã¦æ¸ãã¨è¦ããããªãã¾ãã
- a = εx.P(x) ãªãã° P(a)
(-1)ãâ2ã¨ããå®æ°ã¯ãã¤ãã·ãã³é ã«ä»ããããååã ã¨è§£éã§ãã¾ã*1ãã§ããããä½ãå¤ãªè¨å·ããã¨ãã°ãâããæã¡åºãã¦ã
- â = εx.(x + 1 = 0)
ã¨ããã°ãâã¯é常ã®-1ã¨ã¾ã£ããåãå½¹å²ãæ¼ãã¾ãã
ã¤ãã·ãã³é ãå®ç¾©ããé¢æ°
å½é¡Pã®ãªãã«ãå¤æ°xã ãã§ãªããå¤æ°tãå«ã¾ãã¦ããã¨ãã¾ãããã®ç¶æ³ã®ã¨ãPããP(x, t) ã¨æ¸ãã¦ããã§ããããããã«ãtã®å¤ã«ããããâx.P(x, t) ãä¿è¨¼ããã¦ããï¼ã¾ãã¯åæããï¼ã¨ãã¾ãããããã®ã¨ããã¤ãã·ãã³é εx.P(x, t)ã使ã£ã¦ãããã¨ã«ãªãã¾ãã
ä¾ãåºãã¾ãããã
- εx.(x + t = 0) -- x + t = 0 ã§ãããããªx
- εx.(x2 = t) -- x2 = t ã§ãããããªx
ããã£ã¦ä½ã ããï¼ å°ãèãã¦ã¿ã¦ãã ããã
èãã¾ããï¼ Îµx.(x + t = 0) 㯠-t ã®ãã¨ã§ããããεx.(x2 = t) 㯠âtããããã¨ã¯æå®ã§ãã¾ããããtãã¨ã« ât ã -ât ã®ã©ã£ã¡ã対å¿ãããé¢æ°ã§ãããã£ã¨ããããªã¹ãããªãããããªãã
- εx.(x2 = t ⧠x ⧠0 ⧠t ⧠0)
ã¨æ¸ãã°ãât ï¼t â§0 ï¼ã表ãã¨è¨ãã¾ããã
ä¸è¬ã«ãããé©å½ãªç¯å²ã®tã«å¯¾ãã¦ãâx.P(x, t) ã§ããã¨ãã«ã¯ãã¤ãã·ãã³é εx.P(x, t) ã¯ãtã®é¢æ°ã表ãã¨ã¿ã¦ããã®ã§ãããã®é¢æ°ãfã¨ãããªãã
- f(t) = εx.P(x, t) ï¼t㯠âx.P(x, t)ã§ããç¯å²ãåãï¼
èªç±å¤æ°ãtã ãã§ãªãã¦ãt1, t2, ..., tn ã¨ãã£ã±ããã£ã¦ã話ã¯åãã§ã
- f(t1, t2, ..., tn) = εx.P(x, t1, t2, ..., tn)
ã¨ãã¦ãé¢æ°fãå®ç¾©ã§ãã¾ãããã®fã¯ï¼Pã«å¯¾ããï¼ã¹ã³ã¼ã¬ã é¢æ°ã¨å¼ã°ãã¦ãã¾ãã
ã¤ãã·ãã³è¨å·ã使ãã¤ãã·ãã³è¨æ³ã¯ãã¹ã³ã¼ã¬ã é¢æ°ã«ãã¡ãã¡ååãä»ããã«ç´æ¥è¡¨è¨ããæ¹æ³ã§ãã
ä¾é¡ï¼gãfã®æé¢ï¼ã»ã¯ã·ã§ã³ï¼ã§ãããã¨
f:XâY ãé¢æ°ã§ãã©ããªyâYã«å¯¾ãã¦ã f(x) = y ã¨ãªãxãåå¨ãããã¨ã¯ä¿è¨¼ããã¦ããã¨ãã¾ãï¼fãå ¨å°ã£ã¦ãã¨ï¼ãã¤ã¾ããâx.(f(x) = y)ãP(x, y) â¡ (f(x) = y) ã¨ç½®ãã¨ããã®P(x, y)ã®å¤æ°xã«é¢ããã¤ãã·ãã³é εx.P(x, y) ãä½ãã¾ãã
εx.P(x, y)ãããå ·ä½çã«ã¯ εx.(f(x) = y) ã¯å¤æ°yã«é¢ããé¢æ°gã表ãã¾ãã
- g(y) = εx.(f(x) = y)
g(y)ãè¨èã§èª¬æããã°ã
- g(y)ã¨ã¯ãf(x) = y ã§ãããããªxã®ï¼ã©ãã ãåãããªããï¼ã²ã¨ã¤
ã§ãã
εx.P(x, y) ã«é¢ãã¦ã¯ãP(εx.P(x, y), y) ãæç«ãã¾ããå ·ä½çã«æ¸ãã°ï¼
- f(εx.P(x, y)) = y
g(y) = εx.(f(x) = y) ã使ã£ã¦ç½®ãæãï¼ä»£å ¥ï¼ããã°ï¼
- f(g(y)) = y
ããã ãã§ã¯ãgãfã®éé¢æ°ã¨ã¯æå®ã§ãã¾ããããgã¯ããªãéé¢æ°ã«è¿ããã®ã§ããgã¨fã¯ããåå¨çã¯3ãã«ã¤ãã¦ããããªèãã¦ã¿ã -- EPãã¢ã®ä¾ã¨ãã¦ãã«åºã¦ããEPãã¢ã§ããgãåãè¾¼ã¿ï¼Eï¼ãfãå¼ãè¾¼ã¿ï¼å°å½± Pï¼ã§ãããã ããå ¨å°fãå ã«ä¸ããããã¨ãã¯ãfã«å¯¾ããgãæé¢ï¼ã»ã¯ã·ã§ã³ï¼ã¨å¼ãã ããã¾ããé¸æé¢æ°ã¨ãè¨ãã¾ããããªãã ãã¤ããã¤è¨èããã£ã¦ï¼å¼ãè¾¼ã¿ï¼å°å½±ãåãè¾¼ã¿ï¼æé¢ï¼é¸æé¢æ°ï¼ã¹ã³ã¼ã¬ã é¢æ°ï¼ãããããã§ãããf(g(y)) = y ãé »ç¹ã«ç»å ´ãã¦éè¦ãªãã ã£ã¦ãã¨ã§ãã
f(g(y)) â y ã®ãããªç°¡ç´è¦åã¯ã©ã ãè¨ç®ã§ã¯å°å ¥ãã«ããã®ã§ãããgãã¤ãã·ãã³é ã¨ãã¦æ¸ãã¦ããã¦ãP(εx.P(x, y), y) ãç°¡ç´è¦åã¨ã¿ãªãã¨è¨ç®ããã¾ãããããã§ãããã£ã¨ãããã¯çµé¨åãªã®ã§ãã©ã ãè¨ç®ã¨ã¤ãã·ãã³è¨ç®ãæ··ãããããªå½¢å¼çãªã¢ãã«ããã¾ãä½ãããã©ããã¯ãããããã¾ãããå½é¡Pã®å½¢ã«å¶éãä»ããªãã¨ãè¨ç®ãæ¢ã¾ãããã«ãªãã§ããã
ãªããã·ããªããªãçµããæ¹ã§ããã以ä¸ãã¤ãã·ãã³è¨ç®ã®ç°¡åãªç´¹ä»ã§ããã
*1:±â2 ã¨ããè¨å·è¡¨ç¾ã¯ãεx(x2 = 2) ã«ä»ããããååã ã¨è§£éã§ãã¾ãã