ãç¢å°ã®æ··ä¹±ã«å¯¾å¦ããï¼ ãã«ã«ãéåã®ããã®è¨æ³ãããï¼
ä¸çªããã¥ã©ã¼ãªç¢å°è¨å·ã§ããã$`\to`$ãã¯ãåã®å°ã®ãããã¡ã¤ã«ï¼åã¨ä½åã®ä»æ§ï¼ã®åºåãè¨å·ã«ç¬å çã«ä½¿ããã¦ããã ãã¾ãã
ããã¯ãã¡ãããåã®ç§çææ¡ãã¤ãã顿ã§ãã£ã¦ãç¢å°ã¨ãã³ãã³ã®ãããªä½¿ãåæãè¯ãè¨å·ã¯äºå¥ªæ¦ã«ãªãã¾ããè¨å·ã®ä½¿ç¨ã«ç¬å 権ã¯ãªãã®ã§ãçµå±ã¯ãç°ãªãæå³ã§ãªã¼ãã¼ãã¼ãã«ãªãã®ã¯å¿ ç¶ã§ãããããããªãã
ãããããªãã®ã ãã©ã次ã®ãããªåºå¥ã¯ï¼ä½ããã®æ¹æ³ã§ï¼ãã¦æ¬²ããï¼
- å¹³åæãdeclarative sentenceãã¨çåæãinterrogative sentenceãã¯åºå¥ãã¹ãã
- ãããã¡ã¤ã«ã¨å¤å²ãå½ã¦ãvalue assignmentãã¯åºå¥ãã¹ãã
- è©ä¾¡æ¼ç®åãevaluation operatorãã¨çµåçé©ç¨ãcompositional applicationãã¯åºå¥ãã¹ãã
é çªã«è£è¶³èª¬æãããã¨ï¼$`\newcommand{\Ev}{\triangleleft}
\newcommand{\mrm}[1]{\mathrm{#1} }`$
å¹³åæ vs. çåæ
$`A, B, C`$ ãå½é¡ã ã¨ãã¦ãã¿ã¼ã³ã¹ã¿ã¤ã«è¨å· $`\vdash`$ ã¯ã¡ã¿å½é¡ã®è¨è¿°ã«ä½¿ãã¾ãã
$`\quad A, B \vdash C`$
ããã¯ãã$`A, B`$ ãåæã¨ããã°ã$`C`$ ãæç«ãããã¨ããã¡ã¿ãªå½é¡ã®è¡¨ç¾ã§ããäºå®ã®ä¸»å¼µã¨è¨ã£ã¦ãããã§ãããã
ããã«å¯¾ãã¦ãã$`A, B`$ ãåæã¨ãã¦ã$`C`$ ã¯æç«ãã¾ããï¼ãã¨ããçåæã¯å ¨ç¶å¥ã§ããçåæã¯ã質åæãåãåããæãå顿ã¨ãè¨ã£ã¦ãåãã§ããã¨ãã«ãã$`A, B`$ ãåæã¨ãã¦ã$`C`$ ãæç«ãããã©ããèããªãããã¨ãã$`A, B`$ ãåæã¨ãã¦ã$`C`$ ãæç«ãããã¨ã示ããªãããã¨å½ä»¤å£èª¿ãå ¥ãããç¥ãã¾ãããã ã¨ãã¦ããäºå®ã®ä¸»å¼µã¨ã¯å ¨ç¶éãã¾ãã
åã $`\vdash?`$ ã¨ããè¨å·ãææ¡ããã®ã¯ããäºå®ã®ä¸»å¼µã¨ã質åãåãæ§æã§æ¸ãã®ã¯ããã¦ãããã¨å¼·ãæãããã§ããï¼ãã¡ã¿çåæã®æ¸ãæ¹ãåç §ãï¼
ãããã¡ã¤ã« vs. å¤å²ãå½ã¦
颿°ãå®ç¾©ããã¨ãããããã¡ã¤ã«ï¼åã¨ä½åã®ä»æ§ï¼ã¨å®éã®è¨ç®æ³ãåãã¦æ¸ãã¦ã¿ã¾ããä¾ãã°ï¼
$`\quad f:{\bf R}\times {\bf R} \to {\bf R}\\
\qquad x, y\mapsto x^2 + xy + 1`$
1è¡ç®ããããã¡ã¤ã«ã®å®£è¨ã§ã2è¡ç®ãè¨ç®æ³ã示ãå¤å²ãå½ã¦ã§ãããããã¡ã¤ã«ã®ç¢å°ã¯ $`\to`$ ã§ãå¤å²ãå½ã¦ã®ç¢å°ã¯ $`\mapsto`$ ã§ãã
ãããã¡ã¤ã«ã¨å¤å²ãå½ã¦ãã¾ã¨ãã¦æ¸ãã¨ï¼
$`\quad f:= ( x:{\bf R}, y:{\bf R} \mapsto x^2 + xy + 1 \;: {\bf R})`$
å夿ã¨åãå½¢ã§ããå夿ã¯åä»ãã®é¢æ°å®ç¾©ã¨åããã¨ã§ãã
ãã£ã¨ãå夿ã¯ãåä»ããtypingããå½é¡ã¨ã¿ãªãã¦ãäºå®ã®ä¸»å¼µãããã¦ããã¡ã¿å½é¡ã¨ãè§£éã§ããã®ã§ãã¿ã¼ã³ã¹ã¿ã¤ã«è¨å· $`\vdash`$ ã使ãã®ãè¦å½éãã§ã¯ããã¾ããããã ãã$`\vdash`$ ã使ãæèã¨ä½¿ç¨æ³ãéè¦ã§ãå¤å²ãå½ã¦ãªã®ããããã¡ã¤ã«ãªã®ãäºå®ã®ä¸»å¼µãªã®ã質åæãªã®ãããªãã ãåãããªãä½¿ãæ¹ã¯è¿·æã§ãã
è©ä¾¡æ¼ç®å vs. çµåçé©ç¨
ã©ã ãè¨ç®ã§ã¯ãé©ç¨ã¯åãªã併置ããã¾ãã¯ç©ºç½ãæ¼ç®åè¨å·ã«ä½¿ããã¾ãã$`f\; a`$ ã®å½¢ã§ããããããã¯ãæãé »ç¹ã«ä½¿ãããæ¼ç®åã¯çç¥ãããè¦åã®äºä¾ã§ããè©ä¾¡æ¼ç®åã®æç¤ºçãªè¨å·ã仮㫠$`\Ev`$ ã¨ãã¾ãããã$`f\; a`$ ã¯æ¬¡ã®çç¥å½¢ã§ãã
$`\quad f\Ev a`$
ä¸ç½®æ¼ç®åè¨å·ãåç½®ã®é¢æ°è¨å·ã«ç´ãã°ï¼
$`\quad f\Ev a = \mrm{ev}(f, a)`$
ã§ã¯ãä¼çµ±çãªé©ç¨ã®è¨æ³ã§ãã丸æ¬å¼§ã使ã£ã $`g(x)`$ ã®æå³ã¯ãªãã§ããããããã¯ã$`x;g`$ ããã㯠$`g\circ x`$ ã®å¥è¨æ³ã§ããã$`x`$ ã¯è¦ç´ ã®ã¯ãã ãã¨æãããç¥ãã¾ããããéåã®è¦ç´ $`x\in X`$ ã¯ããã¤ã³ãã£ã³ã°åå $`x:{\bf 1}\to X\text{ in }{\bf Set}`$ ã¨åä¸è¦å¯è½ãªã®ã§ã$`g(x) = g\circ x = x;g`$ ã¨è¦ã¦å·®ãæ¯ãããã¾ãããä¼çµ±çé©ç¨ã¯å°ã®çµåã§ãã
$`\mrm{ev}(f, a)`$ ã¨ããæ¸ãæ¹ã¯ã$`\mrm{ev}\circ \langle f, a\rangle`$ ã®ãã¨ã§ããããã§ï¼
- $`f: {\bf 1} \to [X \to Y]`$
- $`a: {\bf 1} \to X`$
- $`\langle f, a\rangle : {\bf 1}\to [X \to Y]\times X`$
- $`\mrm{ev} : [X \to Y]\times X \to Y`$
$`f`$ ã $`F:X \to Y`$ ã®ã«ãªã¼åãªããæ¬¡ã®ãã¼ã¿å¤æã®çå¼ãæç«ãã¾ãã
$`\quad \mrm{ev}(f, a) = F(a)`$
åããã¨ã§ããï¼
$`\mrm{ev}\circ \langle f, a\rangle = F\circ a`$
æå¾ã«ãç¢å°ã®æ··ä¹±ã«å¯¾å¦ããï¼ ãã«ã«ãéåã®ããã®è¨æ³ãããããã²ã¨ã¤å¼ç¨ï¼
åãããªããæªãã¨ã¯éããªãï¼
- 説æããã¾ããããªãã¨ãã¯ç¨èªæ³ãæªãã®ããç¥ããªãã
- è¨ç®ããã¾ããããªãã¨ãã¯è¨æ³ãæªãã®ããç¥ããªãã