ãçä½éåéã®åã®æ§æ表示 1/2ãã®ç¶ãã§ãããã®æ©ä¼ã«ãåçè«çãªå½¢å¼çä½ç³»ã¨æ§æçãã¼ã¿ã«ã¤ãã¦è©³ãã説æãã¾ããä¸æ¹ãå½¢å¼çä½ç³»ã®æ§æåã¨ååå¤ã®è©±ã¯ãæ¦è¦ãæ¥ã足ã§è¿°ã¹ãã ãã«ãªã£ã¦ãã¾ãã¾ãã -- ãããè£è¶³ããæ©ä¼ãããã§ãããã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\cat}[1]{ \mathcal{#1} }
\newcommand{\In}{\text{ in }}
\newcommand{\id}{ \mathrm{id} } % use
\newcommand{\twoto}{ \Rightarrow } % use
%\newcommand{\op}{ \mathrm{op} }
%\newcommand{\Imp}{\Rightarrow}
%\newcommand{\hyp}{\text{ï¼} }
\newcommand{\H}[1]{ {#1}\text{-} }
\newcommand{\Glob}{\mathsf{Glob} }
\newcommand{\NM}{\boldsymbol{\Omega}}
\newcommand{\AN}[1]{\mathsf{#1}} % Actual Name
%%
\newcommand{\LL}{\langle} % List Left
\newcommand{\LR}{\rangle} % List Right
%%
\require{color} % Using
\newcommand{\NN}[1]{ \textcolor{orange}{\text{#1}} } % New Name
\newcommand{\NX}[1]{ \textcolor{orange}{#1} } % New EXpression
\newcommand{\T}[1]{\text{#1} }
%%
\newcommand{\ckw}[1]{ \:{\bf \text{ #1} } } % classifier keyword
\newcommand{\hinfer}{ \rightrightarrows }% horizontal meta rule (infer)
\newcommand{\vinfer}{ \downdownarrows }% vertical meta rule (infer)
\newcommand{\Emp}{ \langle\rangle }
\newcommand{\Rule}[1]{ \textcolor{orange}{\underline{\text{#1}}\: } } % rule name
\newcommand{\num}[1]{\quad \text{--}(#1) } % numbering
`$
å 容ï¼
- å½¢å¼çä½ç³»
- æ§æçãã¼ã¿æ§é ã®æ¦è¦
- æ§æçãã¼ã¿ã®å®ç¾©
- æ¨è«è¦å
- å°åºã®ä¾
- å°åºããªã¼ã¨å°åºå¯è½æ§
- æ§æçæ£å½æ§
- æ§æå
- ååå¤
ããè¨äºï¼
å½¢å¼çä½ç³»
å½¢å¼çä½ç³»ãformal systemãã¨ã¯ãå½¢å¼è¨èªçè«ãè«çãåçè«ãªã©ã®æ§æè«ãå±éããããã®æ§é ã§ããéåã¨é¢æ°ããçµã¿ç«ã¦ãããæ§é ãªã®ã§ãæ§æ{è«}?çã ããã¨ãã£ã¦ï¼ä¸è¬çãªæ°å¦çæ§é ã¨æ¯ã¹ã¦ï¼ç¹æ®ãªããã§ã¯ãªãã§ãããããããããå ·ä½çã»æéçã«æ§æå¯è½ãªæ§é ãæå¾ ãã¦ãæ§æ{è«}?çãã¨è¨ãã®ã§ãããã
ããã§æ§æããå½¢å¼çä½ç³»ã¯ $`\Glob`$ ã¨ãã¾ãã$`\Glob`$ ã§ä½¿ãååãã©ãã« | èå¥åãéã®ç¡ééåã $`\NM`$ ã¨ãã¾ããç¡ééå $`\NM`$ ã®è¦ç´ ããååãã¨å¼ã¶ã ãã®ãã¨ã§ãååãæååã§ããå¿ è¦æ§ã¯ããã¾ãããç¡ééåãªãä½ã§ãããã®ã§ $`\NM := {\bf N}`$ ã¨ã $`\NM := {\bf Q}`$ ã¨ç½®ãã°ããã§ããå¯ç®ç¡éãã大ã㪠$`{\bf R}`$ ã $`{\bf R}^2`$ ã $`\NM`$ ã«ã¨ã£ã¦ãããã§ããå¥ã«ä½ã§ãããã§ããé¸ãã§åºå®ãã¾ãã
ãªã¹ãã®å²ã¿è¨å·ã«ã¯å±±å½¢æ¬å¼§ã使ãã¾ããããã¯ãè¨æ³ããæè¿ã®åçè«ï¼ å ·ä½çã»æ§æçãªã³ã³ããã¹ããã¨æããã ãã§ç¹ã«æå³ã¯ããã¾ããããªã¹ãã®æå¾ã«é ç®ã追å ãããã¨ããªã¹ãã®æ¡å¼µãextension | æ¡å¤§ãã¨å¼ã³ãæ¡å¼µã®æ¼ç®åè¨å·ã«ãã«ã°ã '$`\cdot`$' ã使ãã¾ãã
$`\quad \LL x_1, \cdots, x_n\LR \cdot y = \LL x_1, \cdots, x_n , y\LR`$
å½¢å¼çä½ç³»ãæ§æããæ§æçãã¼ã¿ã¯ãã»ã¨ãã©ãããªã¹ãï¼ç©ºãªã¹ããåä¸æåã®ãªã¹ãããã¢ãããªãã«ãå«ãï¼ã«ã¿ã°ãåç½®ããå½¢ã§ããã¿ã°ã«ã¢ãããã¼ã¯å§ã¾ãã®ååã使ããã¨ã«ãã¾ããä¾ãã°ãã³ã³ããã¹ãï¼å¾è¿°ï¼ã¯ãªã¹ãã§ããããã®ãªã¹ããã³ã³ããã¹ãã§ãããã¨ãèå¥ããããã« $`\T{@ctx}`$ ã¨ããã¿ã°ãåç½®ãã¾ã*1ã
$`\quad \T{@ctx}\LL d_1, \cdots, d_n\LR`$
ã³ã³ããã¹ãã®é ç®ãæåãã¯å®£è¨ã§ããã宣è¨ã¯ããªãã«ã§ããã宣è¨ã§ãããã¨ãèå¥ããããã«ã¿ã° $`\T{@decl}`$ ãä»ãããªãï¼
$`\quad \T{@ctx}\LL \T{@decl}\LL x_1, k_1, t_1\LR, \cdots, \T{@decl}\LL x_n, k_n, t_n\LR\LR`$
ãã®ããã«ãã¦æ§æçãã¼ã¿ãå®ç¾©ãã¦ããã¨ãæ©æ¢°çå¦çã«ã¯åãã¦ãã¾ãããã人éãèªãã«ã¯ç ©éã¨ãªãã®ã§ãå®éã«ã¯ã¿ã°ãçç¥ãã¾ãã代ããã«ï¼å¿ è¦ãªãï¼ãå²ã¿è¨å·ãåºåãè¨å·ãå¤ãããã¨ã§æ§æçå½¹å²ããsyntactic roleããåºå¥ãã¾ãã
æ§æçå½¹å²ãã¯ãè¨èªå¦ã®ç¨èªã§ãçµ±èªç¯çãã¨ããææ³ç¯çãã¨ãå¼ã³ã¾ããã"syntactic category" ããæ§æåãã¨ä¸¸ãã¶ããªã®ã§ãããããè¨èã¯ä½¿ãã¾ããããéçµç«¯è¨å·ãï¼å½¢å¼è¨èªçè«ã®ç¨èªï¼ã¨ããè¨ãæ¹ããã¾ããã
æ§æçãã¼ã¿æ§é ã®æ¦è¦
å½¢å¼çä½ç³» $`\Glob`$ ãçµã¿ç«ã¦ãããã«å¿ è¦ãªãã¼ã¿é åï¼ãã¼ã¿æ§é ãåæãã¾ããããç¨èªã¨è¨æ³ã¯ããã£ã³ã¹ã¿ã¼ï¼ãã ã©ã è«æããã¼ã¹ã«ãã¦ãã¾ãããé½åã«ããå¤æ´ã¯ãã¦ãã¾ãã
- åå ï¼ éå $`\NM`$ ã®è¦ç´ ãã©ãã³æå $`x, y`$ ï¼ãã㯠$`\NM`$ ä¸ãèµ°ãå¤æ°ï¼ãªã©ã§è¡¨ãã
- åã³ã³ããã¹ã ï¼ å宣è¨ã®ãªã¹ããã®ãªã·ã£æå大æå $`\Gamma, \Delta`$ ãªã©ã§è¡¨ãã
- åå®£è¨ ï¼ ååã¨æ¬¡å ï¼æ´æ°å¤ï¼ã¨å¢çé ï¼å¾è¿°ï¼ã®ããªãã«ãå宣è¨ããªãã« $`\T{@decl}\LL x, k, A\LR`$ ã $`(x :^k A)`$ ã¨æ¸ãã
- é
ï¼ è©³ç´°ã¯å¾è¿°ãå¢çé
ã¨ã¤ã³ã¹ã¿ã³ã¹é
ã«åé¡ãããã
- å¢çé ã¯ãã©ãã³æå大æå $`A, B`$ ãªã©ã§è¡¨ãã
- ã¤ã³ã¹ã¿ã³ã¹é ã¯ãã©ãã³æåå°æå $`t, u`$ ãªã©ã§è¡¨ãã
- ä»£å ¥ ï¼ è©³ç´°ã¯å¾è¿°ã$`\sigma`$ ãã¤ã³ã¹ã¿ã³ã¹é ã®ãªã¹ãã¨ãã¦ã$`\Gamma := \sigma`$ ã¨æ¸ãã
- åå¤æï¼ è©³ç´°ã¯å¾è¿°ãåã³ã³ããã¹ããå¢çé
ãå宣è¨ãã¤ã³ã¹ã¿ã³ã¹é
ã代å
¥ã®æ§æçæ£å½æ§ã表ç¾ããæ§æçãã¼ã¿ã次ã®ããããã®å½¢ã§æ¸ãã
- $`\Vdash \Gamma \ckw{ctx}`$
- $`\Gamma \vdash A \ckw{bdry}`$
- $`\Gamma \vdash (t :^k A) \ckw{inst}`$
- $`\Delta \vdash (\Gamma := \sigma) \ckw{subst}`$
- åæ¨è«è¦å ï¼ è©³ç´°ã¯å¾è¿°ã
- åå°åºããªã¼ ï¼è©³ç´°ã¯å¾è¿°ã
å½¢å¼çä½ç³» $`\Glob`$ ã¯ãåçè«ã®ããã¼ã«å¾ã£ã¦æ§æãããå½¢å¼çä½ç³»ã«ãªãã¾ããåçè«çä½ç³»ãtype-theoretic systemãã§ãããåçè«çä½ç³»ãåã«âåçè«âããããã¯âåã·ã¹ãã âã¨å¼ã¶ãã¨ãããã¾ããç¨èªã®èªé ã«ä»ãã¦ããåãã¯ãã°ãã°çç¥ãã¾ããä¾ãã°ãåã³ã³ããã¹ãã¯åã«ã³ã³ããã¹ãã¨ãå¼ã³ã¾ãã
ååã®éå $`\NM`$ ã¨èªç¶æ°ã®éå $`{\bf N}`$ ï¼ããã¼æ¬¡å ã« $`-1`$ ã使ããã©ï¼ã¯äºåã«ä¸ãããã¦ããã¨ãã¦ï¼$`\NM = {\bf N}`$ ããç¥ããªãï¼ãå ·ä½çã«å®è¡å¯è½ãªç¸äºå帰çãªæé ã§ãæ§æçå½¹å²ããsyntactic roleããã¨ã®éåãå®ç¾©ã§ãã¾ããæ§æçå½¹å²ããã¨ã®éåã¯ããã¦ãç¡ééåã§ããããã®è¦ç´ ã§ããæ§æçãã¼ã¿ã¯ãæéçã§æ©æ¢°çãªæé ã§ä½ãåºããã¨ãã§ãã¾ãããã®ãã¨ããæ§æçãã¨å¼ã°ããæ以ã§ãããã
ãé ãã¨å¼ã°ããæ§æçãã¼ã¿ã«ã¯æ³¨æãå¿ è¦ã§ããå¤ãã®åçè«ã§ã¯ãé ã¯åé ãtype termãã¨ã¤ã³ã¹ã¿ã³ã¹é ãinstance termãã«åé¡ããã¾ãããªãããåé ã¯ãåãã¨çç¥ãããã¤ã³ã¹ã¿ã³ã¹é ã¯ãé ãã¨çç¥ããã¾ãã
é ã®ç¨®é¡ | ç¥ç§° |
---|---|
åé | å |
ã¤ã³ã¹ã¿ã³ã¹é | é |
ãã®çç¥ã¯ãã©ã³ã¹ãæªãå¼å®³ãããã®ã§ãããã§ã¯æ¡ç¨ãã¾ãããã¾ãããåé ãã§ã¯ãªãã¦ãå¢çé ãã¨ããå¼ã³åã«ãã¾ãããã®ã»ãããä»ã®äºä¾ã«ã¯ãµããããããã§ããå¢çé ã®å¹¾ä½çãªæå³ã¯n次å ã®çé¢ï¼ããã¼ã®(-1)次å çé¢ããç¹ãåå¨ãé常ã®çé¢ãªã©ï¼ã§ãã
ãåãã¨ããè¨èãè¾æ¸çæå³ã§çãåºå®çã«èããå¿ è¦ã¯ãªãã¦ãã¤ã³ã¹ã¿ã³ã¹ãç¹å¾´ã¥ããæ å ±ããããã¯ãã¤ã³ã¹ã¿ã³ã¹ã®æå¨å°ãæå±çµç¹ã®æ å ±ã§ããã¨èãã¾ããããçä½éåã®å ´åã¯ãã¤ã³ã¹ã¿ã³ã¹ -- ããªãã¡ã»ã«ãç¹å¾´ã¥ããæå¨ãæããã«ããæ å ±ã¯ã»ã«ã®å¢çï¼çé¢ï¼ã«ãã£ã¦ä¸ãããã¾ãããã£ã¦ãã»ã«ã表ãã¤ã³ã¹ã¿ã³ã¹é ãinstance termãã«å¯¾ãã¦ãæå¨ã表ãå¢çé ãboundary termãã¨ãªãã¾ãã
é常ãé ï¼ã¨å¼ã°ããè¨å·ç表ç¾ï¼ã«ã¯ä»£æ°æ¼ç®ã®æ¼ç®è¨å·ãé¢æ°è¨å·ããå«ã¾ãã¾ããä¾ãã°ç®è¡å¼ãç®è¡é ããªãã足ãç®è¨å· '$`+`$' ã¨æãç®è¨å· '$`\times`$' ã¨ãã§ããããããçä½éåã«ã¯ä»£æ°æ¼ç®ãä½ãå®ç¾©ããã¦ãªãã®ã§ãã¤ã³ã¹ã¿ã³ã¹é ãã»ã«é ãã«æ¼ç®è¨å·ããªããåã«ååã ãã§ããã¤ã¾ããä»åã®äºä¾ $`\Glob`$ ã§ã¯ãã¤ã³ã¹ã¿ã³ã¹é ã®éåã¨ååã®éåã¯åãã§ãããã¼ã¿ã¨ãã¦ã¯åãã§ãæ§æçå½¹å²ãã¯éãã®ã§ãã¤ã³ã¹ã¿ã³ã¹é ã¨ãã¦ã®å½¹å²ããæ ãååã¯ãã¤ã³ã¹ã¿ã³ã¹é ãã¨å¼ã³ã¾ãã
æ§æçãã¼ã¿éãç¸äºå帰çã«å®ç¾©ããæ¹æ³ã¨ãã¦ãBNFãããã«ã¹ï¼ãã¦ã¢å½¢å¼ | Backus-Naur formãï¼ãã³ã³ãã¥ã¼ã¿ã«ããè¨èªå¦çã®å¸¸èãåç §ï¼ã®ãããªã¡ã¿è¨æ³ãããã¾ãããããã§ã¯èªç¶è¨èªï¼ã®æ£æï¼ãã¾ããã¦åå½¢å¼çã«å®ç¾©ãã¦ããã¾ãï¼æ¬¡ç¯ããï¼ã
æ§æçãã¼ã¿ã®å®ç¾©
æ£å¼ãªæ§æçãã¼ã¿ã¯ãå é ã«ã¿ã°ãä»ãããªã¹ãã ã¨ãã¾ããããå®éã«ã¯ç¥è¨ã使ãã¾ããã¿ã°ãæ§æçå½¹å²ãã表ãã¾ãã次ã®ç´æããã¾ãã
- ã¿ã°ã $`\T{@foo-bar}`$ ã§ããæ§æçãã¼ã¿éã®éå㯠$`{\bf FooBar}`$ ã¨å½åããã
- å®ç¾©ããæ§æçãã¼ã¿ãæ´å½¢å¼ãwell-formedãï¼æ§æçã«æ£ããï¼ã¨ã¯éããªããæ´å½¢å¼ãªæ§æçãã¼ã¿éã®éå㯠$`{\bf wfFooBar}`$ ã®ããã«ãå é ã« $`{\bf wf}`$ ãä»ããååã«ããã
- ãæ´å½¢å¼ãwell-formedããã¨ãæ§æçã«æ£å½ãsyntactically correctããã¯å義èªã¨ãã¦ä½¿ãã
以ä¸ã«ç®æ¡æ¸ãã§æ§æçãã¼ã¿ã®å®ç¾©ãæ¸ãã¾ãã
- ååãnameãã¨ã¯ãéå $`\NM`$ ã®è¦ç´ ã®ãã¨ãååå¤æ°ã¯ $`x, y`$ ãªã©ãæ´æ°ãintegerãã¨ã¯ãéå $`{\bf Z}`$ ã®è¦ç´ ã®ãã¨ãæ´æ°å¤æ°ã¯ $`k, l`$ ãªã©ãååã¨æ´æ°ã«ã¯ã¿ã°ãä»ããªãã
- 宣è¨ãdeclarationãã¨ã¯ã$`\T{@decl}\LL x, k, A\LR`$ ã®ãã¿ã¼ã³ã®ãã¼ã¿ãããã§ã$`A`$ ã¯å¢çé ï¼å¾è¿°ï¼ã
- ã³ã³ããã¹ããcontextãã¨ã¯ã
$`\T{@ctx}\LL \T{@decl}\LL x_1, k_1, A_1\LR, \cdots, \T{@decl}\LL x_n, k_n, A_n\LR \LR`$
ã®ãã¿ã¼ã³ã®ãã¼ã¿ãã³ã³ããã¹ãå¤æ°ã¯ $`\Gamma, \Delta`$ ã - å¢çé ãboundary termãã¨ã¯ã$`\T{@bdry}\Emp`$ ã¾ã㯠$`\T{@bdry}\LL t, u, k, B\LR`$ ã®ãã¿ã¼ã³ã®ãã¼ã¿ãããã§ã$`t, u`$ ã¯ã¤ã³ã¹ã¿ã³ã¹é ï¼å¾è¿°ï¼ã$`B`$ ã¯å¢çé ï¼å帰çãªå®ç¾©ï¼ã
- ã¤ã³ã¹ã¿ã³ã¹é ãinstance termãã¨ã¯ã$`\T{@inst}\LL x \LR`$ ã®ãã¿ã¼ã³ã®ãã¼ã¿ã
- ã³ã³ããã¹ãã®å¤æãjudgement for contextãã¨ã¯ã$`\T{@ctx-judge}\LL \Gamma \LR`$ ã®ãã¿ã¼ã³ã®ãã¼ã¿ã
- å¢çä»ãã¤ã³ã¹ã¿ã³ã¹é
ãinstance term with boundaryãã¨ã¯ã
$`\T{@inst-bdry}\LL t, k, A\LR`$ã®ãã¿ã¼ã³ã®ãã¼ã¿ã - å¢çä»ãã¤ã³ã¹ã¿ã³ã¹é ã®å¤æãjudgement for instance term with boundaryãã¨ã¯ã$`\T{@inst-bdry-judge}\LL \Gamma, \T{inst-bdry}\LL t, k, A\LR \LR`$ ã®ãã¿ã¼ã³ã®ãã¼ã¿ã
- å¢çé ã®å¤æãjudgement for boundary termãã¯ã$`\T{@bdry-judge}\LL \Gamma, A\LR`$ ã®ãã¿ã¼ã³ã®ãã¼ã¿ã
- ä»£å ¥ãsubstitutionãã¨ã¯ã$`\T{@subst}\LL \Gamma, \sigma \LR`$ ã®ãã¿ã¼ã³ã®ãã¼ã¿ãããã§ã$`\sigma`$ ã¯ã¤ã³ã¹ã¿ã³ã¹é ã®ãªã¹ããã¤ã¾ãéå $`\mrm{List}({\bf Inst})`$ ã®è¦ç´ ã
- ä»£å ¥ã®å¤æãjudgement for substitutionãã¨ã¯ã$`\T{@subst-judge}\LL \Delta, \T{@subst}\LL \Gamma, \sigma\LR \LR`$ ã®ãã¿ã¼ã³ã®ãã¼ã¿ã
å®ç¾©ã»è¨è¿°ã®ããã«ï¼ã¡ã¿ã¬ãã«ã§ï¼ä½¿ç¨ããï¼ããå¤æ°ãã¾ã¨ãã¦ããã¨ï¼
- $`x, y\in \NM,\; k, l\in {\bf Z}`$
- $`t, u \in {\bf Inst}`$
- $`A, B \in {\bf Bdry}`$
- $`\Gamma, \Delta \in {\bf Ctx}`$
- $`\sigma, \rho \in \mrm{List}({\bf Inst})`$
次ã®ç¥è¨ãæ¡ç¨ãã¾ããç¢å°è¨å·ã®ä½¿ç¨æ³ã®æ¹éã¯ãç¢å°è¨å·ã®ä½¿ç¨æ³ã¨èªã¿æ¹ 2024ãåç §ã
- å®£è¨ $`\T{@decl}\LL x, k, A\LR`$ ã¯ã $`(x :^k A)`$ ã¨ç¥è¨ã
- ã³ã³ããã¹ã $`\T{@ctx}\LL \cdots \LR`$ ã¯ãåãªããªã¹ãã¨ãã¦æ¸ãï¼ã¿ã°çç¥ï¼ã
- å¢çé $`\T{@bdry}\Emp`$ ã¯ã $`*`$ ã¨ç¥è¨ãå¢çé $`\T{@bdry}\LL t, u, k, B\LR`$ ã¯ã $`(t \to u :^k B)`$ ã¨ç¥è¨ã
- ã¤ã³ã¹ã¿ã³ã¹é $`\T{@inst}\LL x \LR`$ ã¯ãåã« $`x`$ ã¨æ¸ãï¼ã¿ã°çç¥ï¼ã
- ã³ã³ããã¹ãã®å¤æ $`\T{@ctx-judge}\LL \Gamma \LR`$ ã¯ã $`\Vdash \Gamma \ckw{ctx}`$ ã¨ç¥è¨ã
- å¢çä»ãã¤ã³ã¹ã¿ã³ã¹é $`\T{@inst-bdry}\LL t, k, A\LR`$ ã¯ã $`(t :^k A)`$ ã¨ç¥è¨ã
- å¢çä»ãã¤ã³ã¹ã¿ã³ã¹é ã®å¤æ $`\T{@inst-bdry-judge}\LL \Gamma, \T{inst-bdry}\LL t, k, A\LR \LR`$ ã¯ã $`\Gamma \vdash (t :^k A) \ckw{inst}`$ ã¨ç¥è¨ã
- å¢çé ã®å¤æ $`\T{@bdry-judge}\LL \Gamma, A\LR`$ ã¯ã $`\Gamma \vdash A \ckw{bdry}`$ ã¨ç¥è¨ã
- ä»£å ¥ $`\T{@subst}\LL \Gamma, \sigma \LR`$ ã¯ã $`(\Gamma := \sigma)`$ ã¨ç¥è¨ã
- ä»£å ¥ã®å¤æ $`\T{@subst-judge}\LL \Delta, \T{@subst}\LL \Gamma, \sigma\LR \LR`$ ã¯ã $`\Delta \vdash (\Gamma := \sigma) \ckw{subst}`$ ã¨ç¥è¨ã
- å²ã¿è¨å·ã®ä¸¸æ¬å¼§ã¯é©å®çç¥ãã¦ãããã
ä¸è¨ã®å®ç¾©ã§ããã¾ãã¾ãªæ§æçãã¼ã¿ã®éåãå®ç¾©ããã¾ããã$`{\bf Decl}, {\bf Ctx}`$ ãªã©ã§ããæ§æçå½¹å²ããéãã°éãã¿ã°ãæã£ã¦ããã®ã§ãå½¹å²ããã¨ã®æ§æçãã¼ã¿ã®éåã¯äº¤ããã¾ãããããã«ã次ã®å®ç¾©ããã¾ãã
$`\quad {\bf Term} := {\bf Bdry} \cup {\bf Inst} \:({\bf Inst} \cong \NM)\\
\quad {\bf Judge} :=\\
\qquad {\bf CtxJudge}\cup {\bf InstBdryJudge}\cup {\bf BdryJudge}\cup {\bf SubstJudge}
`$
$`{\bf Term}`$ ã®è¦ç´ ãé ãtermãã$`{\bf Judge}`$ ã®è¦ç´ ãå¤æãjudgementãã¨å¼ã³ã¾ãã
æ¨è«è¦åãinference ruleãã¨å¼ã°ããæ§æçãã¼ã¿ã¯ãå¹¾ã¤ãã®å¤æãåæã¨ãã¦ãçµè«ã§ããã²ã¨ã¤ã®å¤æãå°ãã«ã¼ã«ã表ããã¼ã¿ã§ããæ¨è«è¦åã®åæã«ã¯ã'$`x\in \NM`$' ã¨ã '$`\mrm{dim}(A) = k - 1`$' ã¨ãã®æ®éã®è«çå¼ãå ¥ããã¨ãããã¾ããå¤æ以å¤ã®è«çå¼ãå¯æ¡ä»¶ãside conditionãã¨ããã¾ããå¯æ¡ä»¶ã®æ§æã¯ä»ã¯å®ç¾©ãã¾ãããï¼ããªãã¦ãåããï¼ãå¯æ¡ä»¶ã®éå㯠$`{\bf Cond}`$ ã¨ãã¾ãã
æ¨è«è¦åã®å®ç¾©ã¨ç¥è¨ã®ç´æã¯æ¬¡ã®ããã«ãªãã¾ãã
- æ¨è«è¦åãinference ruleãã¨ã¯ã$`\T{@infer}\LL r, \LL P_1, \cdots, P_n\LR, Q\LR`$ ã®ãã¿ã¼ã³ã®ãã¼ã¿ãããã§ã$`r`$ ã¯æ¨è«è¦åã®ååï¼æ¬¡ç¯åç §ï¼ã$`P_i \in {\bf Judge}\cup{\bf Cond}`$ ã$`Q \in {\bf Judge}`$
- æ¨è«è¦å $`\T{@infer}\LL r, \LL P_1, \cdots, P_n\LR, Q\LR`$ ã¯ã $`P_1\: \cdots\: P_n \hinfer^r Q`$ ã¨ç¥è¨ãåºåãè¨å·ã¯ç©ºç½ã¾ãã¯æ¹è¡ã
æ¨è«è¦å
å½¢å¼çä½ç³» $`\Glob`$ ã®æ¨è«è¦åãåæãã¾ããä»ã®å½¢å¼çä½ç³»ã§ãããæ¨è«è¦åãæ¸ãã¦ããéå»è¨äºã«ã¯ãæè¿ã®åçè«ï¼ å ·ä½çã»æ§æçãªã³ã³ããã¹ããããè¿°èªè«çï¼ ã«ãªã¼ï¼ãã¯ã¼ãï¼ã©ã³ããã¯å¯¾å¿ã¨æ¨è«ã»åã¤ãè¦åããããã¾ãã$`\Glob`$ ã®æ¨è«è¦åã¯ä»¥ä¸ã®ããã§ãã
- $`\Rule{dummy-bdry}`$ ããã¼ãªå¢çé $`*`$ ã¯ç¡æ¡ä»¶ã«æ£å½
- $`\Rule{new-bdry}`$ æ°ããå¢çé ã®æ§ææ³ã¨æ£å½æ§
- $`\Rule{trivial}`$ èªæãªæ¨è«ã¯æ£å½ãªæ¨è«
- $`\Rule{ctx-thin}`$ ã³ã³ããã¹ããæ°´å¢ãï¼thinningï¼ãã¦ãæ¨è«ã®æ£å½æ§ã¯ç¶æããã
- $`\Rule{emp-ctx}`$ 空ãªã³ã³ããã¹ãã¯ç¡æ¡ä»¶ã«æ£å½
- $`\Rule{ctx-ext}`$ ã³ã³ããã¹ãã®æ¡å¼µæ³ã¨æ£å½æ§
- $`\Rule{emp-subst}`$ 空ãªä»£å ¥ã¯ç¡æ¡ä»¶ã«æ£å½
- $`\Rule{subst-ext}`$ ä»£å ¥ã®æ¡å¼µæ³ã¨æ£å½æ§
ã³ã³ããã¹ã $`\Gamma`$ ã« å®£è¨ $`(x:^k A)`$ ãåºç¾ãããã¨ã
$`\quad (x:^k A) \in: \Gamma`$
ã¨æ¸ããã¨ã«ãã¾ããã¾ããã³ã³ããã¹ã $`\Gamma`$ ã«åºç¾ãã宣è¨ã¯ã³ã³ããã¹ã $`\Delta`$ ã«ãåºç¾ããã¨ã
$`\quad \Gamma \sqsubseteq \Delta`$
ã¨æ¸ããã¨ã«ãã¾ãã
以ä¸ã®æ¨è«è¦åã®è¨è¿°ã«ããã¦ãé ã®æ¬¡å é¢æ°ãã³ã³ããã¹ãã®ååéåãä»£å ¥ã®é ã¸ã®é©ç¨ãapplicationãã使ããã¾ããããã¯æ¨è«è¦åã®å¾ã§è¿°ã¹ã¾ãã$`{\bf nothing}`$ ã¯ç©ºãªã¹ã $`\Emp`$ ã®ãã¨ã§ããæ¨è«è¦åã®åå㯠'$`\hinfer`$' ã®å³è©ã«ã¯ä»ããªãã§ãè¦åºãã«ãã¾ãã
$`\Rule{dummy-bdry}\\
\quad \Vdash \Gamma \ckw{ctx}\\
\hinfer \Gamma \vdash * \ckw{bdry}
`$
$`\Rule{new-bdry}\\
\quad \Gamma \vdash A \ckw{bdry}\\
\quad \Gamma \vdash t :^k A \ckw{inst}\\
\quad \Gamma \vdash u :^k A \ckw{inst} \\
\hinfer \Gamma \vdash t \to u :^{k} A \ckw{bdry}
`$
$`\Rule{trivial}\\
\quad \Vdash \Gamma \ckw{ctx}\\
\quad (x :^k A) \in: \Gamma \\
\hinfer \Gamma \vdash x :^k A \ckw{inst}
`$
$`\Rule{ctx-thin}\\
\quad \Gamma \vdash u :^l B \ckw{inst}\\
\quad \Vdash \Delta \ckw{ctx}\\
\quad \Gamma \sqsubseteq \Delta \\
\hinfer \Delta \vdash u :^l B \ckw{inst}
`$
$`\Rule{emp-ctx}\\
\quad \ckw{nothing}\\
\hinfer \; \Vdash \Emp \ckw{ctx}
`$
$`\Rule{ctx-ext}\\
\quad \Gamma \vdash A \ckw{bdry} \\
\quad \mrm{dim}(A) = k - 1\\
\quad x\in \NM \land x \not\in \mrm{name}(\Gamma)\\
\hinfer \; \Vdash \Gamma \cdot (x :^k A) \ckw{ctx}
`$
$`\Rule{emp-subst}\\
\quad \Vdash \Gamma \ckw{ctx}\\
\hinfer \Gamma \vdash \Emp := \Emp \ckw{subst}
`$
$`\Rule{subst-ext}\\
\quad \Delta \vdash \Gamma := \sigma \ckw{subst}\\
\quad \Delta \vdash A \ckw{bdry} \\
\quad \mrm{dim}(A) = k - 1\\
\quad \Delta \vdash t :^k A[\Gamma := \sigma] \ckw{inst}\\
\hinfer \Delta \vdash \Gamma \cdot (x :^k A) := \sigma \cdot t \ckw{subst}
`$
ãã¼ã¯ã¼ã $`{\bf inst}`$ ãä»ããå¤æã¯ãã¤ã³ã¹ã¿ã³ã¹é ã§ã¯ãªãã¦å¢çä»ãã¤ã³ã¹ã¿ã³ã¹é ï¼éå $`{\bf InstBdry}`$ ã®è¦ç´ ï¼ã«å¯¾ããå¤æã§ããã¤ã³ã¹ã¿ã³ã¹é ã¯åãªãï¼ã¿ã°ãä»ããï¼ååã§æå¨ä¸æãªã®ã§ãã¤ã³ã¹ã¿ã³ã¹é ã ãã§ã¯ãã¾ãæå³ãããã¾ããã
ã³ã³ããã¹ã $`\Gamma`$ ã®ååã®éåã¯ã$`\Gamma`$ å ã®å®£è¨ $`(x :^k A)`$ ã«åºç¾ããåå $`x`$ éã®éåã§ã $`\mrm{name}(\Gamma)`$ ã¨æ¸ãã¾ãã$`\Gamma`$ å ã«åãååããåã¯åºç¾ããªããã¨ã¯å¸°ç´æ³ã§è¨¼æã§ãã¾ãããããã£ã¦ããªã¹ãã¨ãã¦ã® $`\Gamma`$ ã®é·ãã¨ãéå $`\mrm{name}(\Gamma)`$ ã®åºæ°ã¯åãã§ãã
$`\Rule{ctx-ext}`$ ã«åºã¦ããå¯æ¡ä»¶ $`x \not\in \mrm{name}(\Gamma)`$ ã¯ã$`x \text{ is fresh}`$ ã¨ãç¥è¨ãã¦ãåå $`x`$ ã¯ï¼ãã®æç¹ã®ã³ã³ããã¹ãã«å¯¾ãã¦ï¼ãã¬ãã·ã¥ãfreshãã ã¨è¨ãã¾ãã
é ã®æ¬¡å é¢æ° $`\mrm{dim} = \mrm{dim}_\Gamma`$ ã¯ãã³ã³ããã¹ã $`\Gamma`$ ã¨ç¸å¯¾çã«æ¬¡ã®ããã«å®ç¾©ãã¾ãã
- ã³ã³ããã¹ãã«ç¡é¢ä¿ã« $`\mrm{dim}(*) = -1`$
- ã¤ã³ã¹ã¿ã³ã¹é $`t = \T{@inst}\LL x \LR`$ ã®åå $`x`$ ã $`(x:^k A)`$ ã®å½¢ã®å®£è¨ã¨ã㦠$`\Gamma`$ ã«åºç¾ããã¨ã¨ãã$`\mrm{dim}(t) = k`$ ã
- å¢çé $`A = (t \to u :^k B)`$ ã®æ¬¡å 㯠$`\mrm{dim}(A) = k`$ ã
ä»£å ¥ $`(\Gamma := \sigma)`$ ã®é ã¸ã®é©ç¨ãapplicationãï¼ã¾ãã¯ä½ç¨ãactionãï¼ã¯æ¬¡ã®ããã«å®ç¾©ãã¾ãã
- 被ä½ç¨é ããªãã©ã³ããã $`*`$ ã®ã¨ãï¼ $`*[\Gamma := \sigma] := *`$
- 被ä½ç¨é
ãã¤ã³ã¹ã¿ã³ã¹é
$`t`$ ã®ã¨ãï¼
- ã¤ã³ã¹ã¿ã³ã¹é $`t`$ ã®åå $`x`$ ã $`\mrm{name}(\Gamma)`$ ã«æå±ãã¦ãã¦ããã®ååã $`\Gamma`$ ã® $`i`$ çªç®ã«åºç¾ããã¨ãã$`t[\Gamma := \sigma] := \sigma_i`$
- ããã§ãªãã¨ãã¯æªå®ç¾©*2
- 被ä½ç¨é
ãå¢çé
$`A`$ ã®ã¨ãï¼ å¢çé
$`A`$ ã $`(t \to u :^k B)`$ ã ã¨ãã¦ã
$`A[\Gamma := \sigma] := (t[\Gamma := \sigma] \to u[\Gamma := \sigma] :^k B[\Gamma := \sigma])`$
å°åºã®ä¾
å½¢å¼çä½ç³» $`\Glob`$ ã®å°åºããªã¼ã¨ããæ§æçãã¼ã¿ãï¼æ¬¡ç¯ã§ï¼èª¬æããåã«ãå°åºããªã¼ã®å®ä¾ãæãã¦ããã¾ãã
次ã®ãããª2次å ãã¼ã¹ãã£ã³ã°å³ãèãã¾ãã
$`\quad \xymatrix{
{\AN{a}} \ar@/^1pc/[r]^{\AN{f}} \ar@/_1pc/[r]_{\AN{g}}
\ar@{}[r]|{\AN{A}\, \Downarrow}
& {\AN{b}}
}`$
åºç¾ããååã¯ãå¤æ°ã§ã¯ãªãã¦ã$`\NM`$ ã®è¦ç´ ãã®ãã®ã ã¨ãã¾ããããã強調ããããã«ãååããµã³ã»ãªãä½ã«ãã¦ãã¾ãã
2-ã»ã« $`\AN{A}`$ ã®ãããã¡ã¤ã«ãã¹ã¯æ¬¡ã®ããã«ãªãã¾ãã
$`\quad \AN{A} :: \AN{f} \twoto \AN{g} : \AN{a} \to \AN{b}`$
ç¢å°è¨å·ã¯ã·ã³ãã«ãªç¢å°ã ãã«ãã¦ãã³ãã³ã®åæ°ã¯å·¦è©ææ°ã§è¡¨ãã¨ãã¾ããããã«ãããã¼ã®(-1)次å ã»ã«ãå«ããã¨ã$`\AN{A}`$ ã®ãããã¡ã¤ã«ãã¹ã¯æ¬¡ã®ããã«æ¸ãã¾ãã
$`\quad \AN{A} :^2 \AN{f} \to \AN{g} :^1 \AN{a} \to \AN{b} :^0 *`$
ãããã¡ã¤ã«ãã¹ã®å®£è¨ãä¸ç¨®ã®å½é¡ã¨èãã¦ãå½¢å¼çä½ç³» $`\Glob`$ ã«ãããâå°åºâãèãã¾ãã以ä¸ã®ãããªå¤æã®ä¸¦ã³ã¯ãå°åºéç¨ãããç¨åº¦ã¯è¡¨ç¾ãã¦ããã¨è¨ããã§ãããã
- $`\Vdash \Emp \ckw{ctx}`$
- $`\Emp\vdash * \ckw{bdry}`$
- $`\Vdash \LL \AN{a} :^0 * \LR \ckw{ctx}`$
- $`\LL \AN{a} :^0 * \LR \vdash * \ckw{bdry}`$
- $`\Vdash \LL \AN{a} :^0 *, \AN{b}:^0 * \LR \ckw{ctx}`$
- $`\LL \AN{a} :^0 *, \AN{b}:^0 * \LR \vdash \AN{a}:^0 * \ckw{inst}`$
- $`\LL \AN{a} :^0 *, \AN{b}:^0 * \LR \vdash \AN{b}:^0 * \ckw{inst}`$
- $`\LL \AN{a} :^0 *, \AN{b}:^0 * \LR \vdash \AN{a} \to \AN{b} :^0 * \ckw{bdry}`$
- $`\Vdash \LL \AN{a} :^0 *, \AN{b}:^0 * ,\AN{f}:^1 \AN{a} \to \AN{b} :^0 *\LR \ckw{ctx}`$
- $`\Vdash \LL \AN{a} :^0 *, \AN{b}:^0 * , \AN{f}:^1 \AN{a} \to \AN{b} :^0 * , \AN{g}:^1 \AN{a} \to \AN{b} :^0 * \LR \ckw{ctx}`$
- $`\LL \AN{a} :^0 *, \AN{b}:^0 * , \AN{f}:^1 \AN{a} \to \AN{b} :^0 * , \AN{g}:^1 \AN{a} \to \AN{b} :^0 * \LR \vdash \AN{f}:^1 \AN{a} \to \AN{b} :^0 * \ckw{inst}`$
- $`\LL \AN{a} :^0 *, \AN{b}:^0 * , \AN{f}:^1 \AN{a} \to \AN{b} :^0 * , \AN{g}:^1 \AN{a} \to \AN{b} :^0 * \LR \vdash \AN{g}:^1 \AN{a} \to \AN{b} :^0 * \ckw{inst}`$
- $`\Vdash \\ \LL \AN{a} :^0 *, \AN{b}:^0 * , \AN{f}:^1 \AN{a} \to \AN{b} :^0 * , \AN{g}:^1 \AN{a} \to \AN{b} :^0 *, \AN{A} :^2 \AN{f} \to \AN{g}:^1 \AN{a} \to \AN{b} :^0 *\LR \\ \quad \ckw{ctx}`$
- $`\LL \AN{a} :^0 *, \AN{b}:^0 * , \AN{f}:^1 \AN{a} \to \AN{b} :^0 * , \AN{g}:^1 \AN{a} \to \AN{b} :^0 * , \AN{A} :^2 \AN{f} \to \AN{g}:^1 \AN{a} \to \AN{b} :^0 *\LR\\ \quad \vdash \AN{A} :^2 \AN{f} \to \AN{g}:^1 \AN{a} \to \AN{b} :^0 * \ckw{inst}`$
å°åºéç¨ããã£ã¨ç²¾å¯ã«è¨è¿°ããããã«ã次ã®3段éã«åãã¾ãã
- 0次å ã®ã³ã³ããã¹ã $`\LL \AN{a} :^0 *, \AN{b}:^0 * \LR`$ ã®æ§æ
- 1次å ã®ã³ã³ããã¹ã $`\LL \AN{a} :^0 *, \AN{b}:^0 * , \AN{f}:^1 \AN{a} \to \AN{b} :^0 * , \AN{g}:^1 \AN{a} \to \AN{b} :^0 * \LR`$ ã®æ§æ
- 2次å ã®ãããã¡ã¤ã«ãã¹å®£è¨ $`\AN{A} :^2 \AN{f} \to \AN{g}:^1 \AN{a} \to \AN{b} :^0 *`$ ã®æ§æ
第1段éï¼
å¤æã»å¯æ¡ä»¶ã®å³å´ã«çªå·ãæ¯ãã¾ããæ¨è«è¦åã®åæã¨ãã¦ä½¿ã£ãå¤æã»å¯æ¡ä»¶ããæ¨è«è¦ååã«ç¶ãã¦æ¸ãã¾ããæ¨è«è¦åã®çµè«ã¯ '$`\vinfer`$' ã®è¡ã®æ¬¡ã®è¡ã§ãã
$`\ckw{nothing}\\
\vinfer \Rule{emp-ctx}\\
\Vdash \Emp \ckw{ctx} \num{1} \\
\vinfer \Rule{dummy-bdry} (1)\\
%
\Emp \vdash * \ckw{bdry} \num{2}\\
\mrm{dim}(*) = -1 \num{3}\\
\AN{a} \in \NM \land \AN{a} \text{ is fresh}\quad\text{--}(4)\\
\vinfer \Rule{ctx-ext} (2), (3), (4)\\
%
\Vdash \LL \AN{a} :^0 * \LR \ckw{ctx} \num{5}\\
\vinfer \Rule{dummy-bdry} (5)\\
%
\LL \AN{a} :^0 * \LR \vdash * \ckw{bdry} \num{6}\\
\mrm{dim}(*) = -1 \num{7} \\
\AN{b} \in\NM \land \AN{b} \text{ is fresh}\num{8}\\
\vinfer \Rule{ctx-ext} (6), (7), (8)\\
%
\Vdash \LL \AN{a} :^0 *, \AN{b}:^0 * \LR \ckw{ctx} \num{9}
`$
第2段éï¼
$`\Vdash \LL \AN{a} :^0 *, \AN{b}:^0 * \LR \ckw{ctx} \num{9}\\
\vinfer \Rule{dummy-bdry} (9)\\
%
\LL \AN{a} :^0 *, \AN{b}:^0 * \LR \vdash * \ckw{bdry} \num{10}\\
(\AN{a} :^0 *) \in: \LL \AN{a} :^0 *, \AN{b}:^0 * \LR \num{11}\\
\vinfer \Rule{trivial} (9),(11)\\
%
\LL \AN{a} :^0 *, \AN{b}:^0 * \LR \vdash \AN{a}:^0 * \ckw{inst} \num{12}\\
(\AN{b} :^0 *) \in: \LL \AN{a} :^0 *, \AN{b}:^0 * \LR \num{13}\\
\vinfer \Rule{trivial} (9),(13)\\
%
\LL \AN{a} :^0 *, \AN{b}:^0 * \LR \vdash \AN{b}:^0 * \ckw{inst} \num{14}\\
\vinfer \Rule{new-bdry}(10),(12),(14)\\
%
\LL \AN{a} :^0 *, \AN{b}:^0 * \LR \vdash \AN{a} \to \AN{b} :^0 * \ckw{bdry} \num{15}\\
\mrm{dim}(\AN{a} \to \AN{b} :^0 * ) = 0 \num{16}\\
\AN{f} \in \NM \land \AN{f} \text{ is fresh}\num{17}\\
\vinfer \Rule{ctx-ext}(15), (16), (17)\\
%
\Vdash \LL \AN{a} :^0 *, \AN{b}:^0 *, \AN{f} :^1 \AN{a} \to \AN{b} :^0 * \LR \ckw{ctx} \num{18}\\
\AN{g} \in \NM \land \AN{g} \text{ is fresh}\num{19}\\
\vinfer \Rule{ctx-ext}(15), (16), (19)\\
%
\Vdash \LL \AN{a} :^0 *, \AN{b}:^0 *, \AN{f} :^1 \AN{a} \to \AN{b} :^0 * , \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \LR \ckw{ctx} \num{20}
`$
第3段éï¼
$`\Vdash \LL \AN{a} :^0 *, \AN{b}:^0 *, \AN{f} :^1 \AN{a} \to \AN{b} :^0 * , \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \LR \ckw{ctx} \num{20}\\
(\AN{f} :^1 \AN{a} \to \AN{b} :^0 * ) \in: \LL \AN{a} :^0 *, \AN{b}:^0 *, \AN{f} :^1 \AN{a} \to \AN{b} :^0 * , \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \LR \num{21}\\
\vinfer \Rule{trivial} (20), (21) \\
%
\LL \AN{a} :^0 *, \AN{b}:^0 *, \AN{f} :^1 \AN{a} \to \AN{b} :^0 * , \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \LR \vdash \AN{f} :^1 \AN{a} \to \AN{b} :^0 * \ckw{inst} \num{22}\\
(\AN{g} :^1 \AN{a} \to \AN{b} :^0 * ) \in: \LL \AN{a} :^0 *, \AN{b}:^0 *, \AN{f} :^1 \AN{a} \to \AN{b} :^0 * , \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \LR \num{23}\\
\vinfer \Rule{trivial} (20), (23) \\
%
\LL \AN{a} :^0 *, \AN{b}:^0 *, \AN{f} :^1 \AN{a} \to \AN{b} :^0 * , \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \LR \vdash \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \ckw{inst} \num{24}\\
\vinfer \Rule{new-bdry} (15), (22), (24)\\
%
\LL \AN{a} :^0 *, \AN{b}:^0 *, \AN{f} :^1 \AN{a} \to \AN{b} :^0 * , \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \LR \\
\quad \vdash \AN{f} \to \AN{g} :^1 \AN{a} \to \AN{b} :^0 *\ckw{bdry} \num{25}\\
\quad \mrm{dim}(\AN{f} \to \AN{g} :^1 \AN{a} \to \AN{b} :^0 *) = 1 \num{26}\\
\quad \AN{A} \in \NM \land \AN{A} \text{ is fresh}\num{27}\\
\vinfer \Rule{ctx-ext} (25), (26), (27)\\
%
\Vdash \LL \AN{a} :^0 *, \AN{b}:^0 *, \AN{f} :^1 \AN{a} \to \AN{b} :^0 * , \AN{g} :^1 \AN{a} \to \AN{b} :^0 *, \AN{A}:^2 \AN{f} \to \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \LR\\
\quad \ckw{ctx} \num{28}\\
(\AN{A}:^2 \AN{f} \to \AN{g} :^1 \AN{a} \to \AN{b} :^0 * )\in: \\
\quad \LL \AN{a} :^0 *, \AN{b}:^0 *, \AN{f} :^1 \AN{a} \to \AN{b} :^0 * , \AN{g} :^1 \AN{a} \to \AN{b} :^0 *, \AN{A}:^2 \AN{f} \to \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \LR \num{29}\\
\vinfer \Rule{trivial} (28), (29)\\
\LL \AN{a} :^0 *, \AN{b}:^0 *, \AN{f} :^1 \AN{a} \to \AN{b} :^0 * , \AN{g} :^1 \AN{a} \to \AN{b} :^0 *, \AN{A}:^2 \AN{f} \to \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \LR\\
\quad \vdash \AN{A}:^2 \AN{f} \to \AN{g} :^1 \AN{a} \to \AN{b} :^0 * \ckw{inst} \num{30}
`$
以ä¸ã¯ãããã¹ãã§æ¸ãã¾ããããå°åºéç¨ãçµµå³ã«æãã°æ¬¡ã®ããã§ãã
å°åºããªã¼ã¨å°åºå¯è½æ§
å°åºéç¨ã表ãçµµå³ã¯ãåå²ãæã¤ã®ã§å®éã¯ããªã¼ã§ã¯ããã¾ãããããå ±æããã¦ããé¨åãè¤è£½ãã¦æããã¨ã«ããããªã¼ç¶ã®å³å½¢ã¨ã¿ãªããã¨ãã§ãã¾ãããªã®ã§ã以ä¸ãããªã¼ã¨ãã¦è¨è¿°ãã¾ãããã ããã«ã¼ãããªã¼ãããã¼ãã¨ã¯éãããéããæå辺ï¼ãã©ã°ã¨å¼ã¶ï¼ãçµç«¯ï¼ã«ã¼ãã¾ãã¯ãªã¼ãï¼ã«ãªããã¨ãããã¾ãã
çµç«¯ããã¼ãã¨ã¯éããªãã°ã©ãã¯åã°ã©ããã»ãã°ã©ããã¨ããã¾ãï¼ãåã°ã©ãã®æ§ã ãªå®ç¾©ãåç §ï¼ãããã§ã¯ãåã°ã©ããé¿ããããã«ãããã¼ã®ã«ã¼ãã¨ããã¼ã®ãªã¼ããã¼ãã追å ãã¦æ±ããã¨ã«ãã¾ããä¾ãã°ãåç¯ã®ä¾ã®ä¸é¨ãåãåã£ãããªã¼ã«ããã¼ã®ã«ã¼ãã¨ããã¼ã®ãªã¼ããã¼ãã追å ããã¨ä»¥ä¸ã®ããã§ãã
é»ããããã§æãã¦ãããã¼ããããã¼ã®ãã¼ãã§ããå³å´ã®æ°å¤ã¯ãã«ã¼ããã¼ããé«ã 0 ã¨ãã¦é«ãã®å¤ã§ãã
å¹³é¢ï¼åº§æ¨ãå ¥ããã° $`{\bf R}^2`$ï¼ã«æãããããªã¼ã«é¢ãã¦ã¯ãæè¿ã®è¨äºãææ¨ã®è©±ï¼ ãã¼ã¹ãã£ã³ã°å³ã¨ãã¿ãã³ã»ããªã¼ // ãã¿ãã³ã»ããªã¼ãã§è¿°ã¹ã¦ããã®ã§ããã®å®ç¾©ãæ¡ç¨ãã¾ãããã¼ããé ç¹ãéã¯é«ãã§åé¡ãããã«ã¼ã以å¤ã®ãã¼ãã«ã¯è¦ªãã¼ããå®ã¾ãã¾ããåã親ãæã¤å å¼ãã¼ãéãsiblingsãã¯å ¨é åºéåã«ãªãã¾ãã
ãã¦ãå½¢å¼çä½ç³» $`\Glob`$ ã®å°åºããªã¼ãderivation treeãã¯ãä¸è¨ã®æå³ã®æéå¹³é¢ããªã¼ãfinite planar treeãã§ããã次ã®ç¹å¾´ãæã¡ã¾ãã
- ããã¼ãã¼ã以å¤ã®ãã¼ãã«ã¯ãæ¨è«è¦åï¼ã®ååï¼ãã©ãã«ãããã
- 辺ã«ã¯ãå¤æã¾ãã¯å¯æ¡ä»¶ãã©ãã«ãããã
- æ¨è«è¦åã®ãã¼ãã«å¯¾ãã¦ãå ¥ã辺ã®ã©ãã«éã®ãªã¹ãã¨åºã辺ã®ã©ãã«ã¯ã$`\Glob`$ ã®æ§æè¦åã®ãã¿ã¼ã³ãæºããã¦ããã
åãã¼ããæããªãæ¨è«è¦åãã¼ã㯠$`\Rule{emp-ctx}`$ ã«éãã®ã§ãå°åºããªã¼ã®ãªã¼ããã¼ãã¯ã$`\Rule{emp-ctx}`$ ããã¾ãã¯å¯æ¡ä»¶ã«å¯¾å¿ããããã¼ãã¼ãã§ããä¸æ¹ãã«ã¼ãï¼ã«åãã辺ï¼ã®ã©ãã«ã¯æ¬¡ã®ããããã§ãã
- å¢çé ã®å¤æ
- å¢çä»ãã¤ã³ã¹ã¿ã³ã¹é ã®å¤æ
- ã³ã³ããã¹ãã®å¤æ
- ä»£å ¥ã®å¤æ
ããã4種é¡ãç·ç§°ãã¦å¤æã¨å¼ãã§ããã®ã§ãã«ã¼ãï¼ã«åãã辺ï¼ã«ã¯å¤æãã©ãã«ããã¾ãã
$`\Glob`$ ã®å¤æãããã®å¤æãã«ã¼ãã¨ããå°åºããªã¼ãæã¤ãªãï¼åå¨ãããªãï¼ãå¤æã¯å°åºå¯è½ãderivableãã¨ããã¾ãã
ãã®ç¯ã«å 容ã«é¢é£ãã¦ã次ã®éå»è¨äºãåèã«ãªãããç¥ãã¾ããã
æ§æçæ£å½æ§
å½¢å¼çä½ç³» $`\Glob`$ ãæ§æããæ§æçãªãã¼ã¿ã®éåã«ã¯æ¬¡ãããã¾ãã
- $`{\bf Decl}`$
- $`{\bf Ctx}`$
- $`{\bf Bdry}`$
- $`{\bf Inst}`$
- $`{\bf CtxJudge}`$
- $`{\bf InstBdry}`$
- $`{\bf InstBdryJudge}`$
- $`{\bf BdryJudge}`$
- $`{\bf Subst}`$
- $`{\bf SubstJudge}`$
ãããã®éåã®é¨åéåã¨ãã¦ãæ§æçã«æ£å½ãªï¼ãããã¯æ´å½¢å¼ãªï¼ãã¼ã¿ã®éåãããã¾ãã
- $`{\bf wfDecl}`$ ï¼ å¯¾å¿ããâå¢çä»ãã¤ã³ã¹ã¿ã³ã¹é ã®å¤æâãå°åºå¯è½ãªã¨ãæ§æçã«æ£å½
- $`{\bf wfCtx}`$ ï¼ å¯¾å¿ããâã³ã³ããã¹ãã®å¤æâãå°åºå¯è½ãªã¨ãæ§æçã«æ£å½
- $`{\bf wfBdry}`$ ï¼ å¯¾å¿ããâå¢çé ã®å¤æâãå°åºå¯è½ãªã¨ãæ§æçã«æ£å½
- $`{\bf wfInst}`$ ï¼ ã¤ã³ã¹ã¿ã³ã¹é åç¬ã§ã¯ãã¾ãæå³ããªããã便å®ä¸ããã¹ã¦ã®ã¤ã³ã¹ã¿ã³ã¹é ãæ§æçã«æ£å½ãæ´å½¢å¼ãã¨ãã¦ããã
- $`{\bf wfCtxJudge}`$ ï¼ å°åºå¯è½ãªå¤æã¯æ§æçã«æ£å½
- $`{\bf wfInstBdry}`$ ï¼ å¯¾å¿ããâå¢çä»ãã¤ã³ã¹ã¿ã³ã¹é ã®å¤æâãå°åºå¯è½ãªã¨ãæ§æçã«æ£å½
- $`{\bf wfInstBdryJudge}`$ ï¼ å°åºå¯è½ãªå¤æã¯æ§æçã«æ£å½
- $`{\bf wfBdryJudge}`$ ï¼ å°åºå¯è½ãªå¤æã¯æ§æçã«æ£å½
- $`{\bf wfSubst}`$ ï¼ å¯¾å¿ããâä»£å ¥ã®å¤æâãå°åºå¯è½ãªã¨ãæ§æçã«æ£å½
- $`{\bf wfSubstJudge}`$ ï¼ å°åºå¯è½ãªå¤æã¯æ§æçã«æ£å½
æ§æçæ£å½æ§ã¯å°åºå¯è½æ§ããå®ç¾©ãããã®ã§ãæ¨è«è¦åéããçæãããå°åºããªã¼éã®éåãæ§æçæ£å½æ§ã決å®ãã¦ããã¨è¨ãã¾ããåç¯ã¨åãéå»è¨äºãåç §ãã¦ããã¾ãã
æ§æå
å½¢å¼çä½ç³» $`\Glob`$ ã®æ§æåãsyntactic categoryã $`\mrm{SynCAT}(\Glob)`$ ã¯æ¬¡ã®ããã«å®ç¾©ãã¾ãã$`\cat{S} := \mrm{SynCAT}(\Glob)`$ ã¨ç½®ãã¾ãã
- $`\cat{S}`$ ã®å¯¾è±¡ã¯ã$`\Glob`$ ã®æ´å½¢å¼ï¼æ§æçã«æ£å½ãªï¼ã³ã³ããã¹ãã¨ããã
- $`\cat{S}`$ ã®å°ã¯ã$`\Glob`$ ã®æ´å½¢å¼ï¼æ§æçã«æ£å½ãªï¼ãªä»£å ¥ã®å¤æã¨ããã
ã¤ã¾ãï¼
$`\quad |\cat{S}| := {\bf wfCtx}\\
\quad \mrm{Mor}(\cat{S}) := {\bf wfSubstJudge}
`$
ä»£å ¥ã®å¤æ㯠$`\Delta \vdash \Gamma := \sigma`$ ã®å½¢ããã¦ããã®ã§ãåã»ä½åã次ã®ããã«å®ç¾©ãã¾ãã
$`\quad \mrm{dom}(\Delta \vdash \Gamma := \sigma) := \Delta\\
\quad \mrm{cod}(\Delta \vdash \Gamma := \sigma) := \Gamma
`$
æçå°ã¯æ¬¡ã®å½¢ã®ä»£å ¥ã®å¤æã§ãã
$`\quad \LL x_1: A_1, \cdots, x_n : A_n\LR \vdash
\LL x_1: A_1, \cdots, x_n : A_n\LR := \LL x_1, \cdots, x_n \LR
`$
åã®çµåãcompositionãã®å³å¼é æ¼ç®åè¨å·ã '$`;`$' ã¨ãã¦è¨è¿°ãã¾ããã¾ããä»£å ¥ã®å¤æãä¸ç¨®ã®ã©ã ãæ½è±¡ã ã¨æã£ã¦ãã©ã ãè¨æ³ã§æ¸ãã¨è¦ªãã¿ãããã¾ãã
$`\quad \lambda\, \Delta.( \Gamma := \sigma ) \;: \Delta \to \Gamma \In \cat{S}`$
ãã®æ¸ãæ¹ã§åã®çµåãå®ç¾©ããã¨ï¼
$`\text{For }\lambda\, \Delta.( \Gamma := \sigma ) \;: \Delta \to \Gamma \In \cat{S}\\
\text{For }\lambda\, \Gamma.( \Phi := \rho ) \;: \Gamma \to \Phi \In \cat{S}\\
\quad \lambda\, \Delta.( \Gamma := \sigma ) ;\lambda\, \Gamma.( \Phi := \rho )
:= \lambda\, \Delta.( \Phi := \rho[\Gamma := \sigma] )
`$
$`\rho`$ ã¯ã¤ã³ã¹ã¿ã³ã¹é ï¼äºå®ä¸åãªãååï¼ã®ãªã¹ããªã®ã§ãä»£å ¥ã®é©ç¨ã¯æåãã¨ã«å®è¡ãã¾ãã
ãã®ããã«ãã¦å®ç¾©ãã $`\cat{S} = \mrm{SynCAT}(\Glob)`$ ãå®éã«åã®æ³åãå ¬çããæºãããã¨ã¯å¥é確èªããå¿ è¦ãããã¾ããå²æãã¾ãã
ååå¤
ãçä½éåéã®åã®æ§æ表示 1/2ãã«ããã¦ãç¡äº¤å·®æéãªçä½éåã®åãå®ç¾©ãã¾ããã
$`\quad {\bf DisjFin}\H{{\bf G}}{\bf Set} \;\in |{\bf CAT}|`$
åç¯ã§å®ç¾©ãããå½¢å¼çä½ç³» $`\Glob`$ ã®æ§æå $`\cat{S} = \mrm{SynCAT}(\Glob)`$ ã¯ã$`{\bf DisjFin}\H{{\bf G}}{\bf Set}`$ ã¨åå¤ã«ååå¤ã«ãªãã¾ããæ§æåããç¡äº¤å·®æéãªçä½éåã®åã¸ã®å¯¾å¿ã®æ¹éã示ãã¾ãã
ã³ã³ããã¹ã $`\Gamma \in \cat{S}`$ ã«å¯¾ãã¦ã次ã®ãããªçä½éå $`X`$ ãä½ãã¾ãã
- $`X`$ ã®ãã¹ã¦ã®ã»ã«ã®éåã $`\overline{X} := \mrm{name}(\Gamma)`$ ã¨ããã
- åå $`x \in \mrm{name}(\Gamma)`$ 㯠$`(x :^k A)`$ ã®å½¢ã§ã³ã³ããã¹ãã«åºç¾ããã®ã§ã$`\mrm{dim}(x) = k`$ ã¨ãã¦ãã»ã«ã®æ¬¡å ãå®ç¾©ããã
- 0次å ã§ã¯ãªãã»ã« $`x`$ ã¯ã$`(x :^{k+1} t \to u : B )`$ ã®å½¢ã§ã³ã³ããã¹ãã«åºç¾ããã®ã§ã$`x`$ ã®ã½ã¼ã¹é¢ã $`t`$ ãã¿ã¼ã²ããé¢ã $`u`$ ã¨å®ç¾©ããã
ãã®ããã«ãã¦ã$`k`$ ãã¨ã«ä»¥ä¸ã®æ§é ãä½ãã¾ãã
$`\quad \T{s}^X_k, \T{t}^X_k : X_{k + 1} \to X_k \In {\bf FinSet}`$
å ¨ä½ã¨ãã¦çä½æçå¼ãæºãããã¨ã確èªããã°ã$`X`$ ã¯çä½éåã¨ãªãã¾ãã
ã³ã³ããã¹ã $`\Gamma`$ ã«å¯¾å¿ããçä½éåã $`X`$ ãã³ã³ããã¹ã $`\Delta`$ ã«å¯¾å¿ããçä½éåã $`Y`$ ã¨ããã¨ããä»£å ¥ã®å¤æ $`\lambda\,\Delta.(\Gamma :=\sigma)`$ ããçä½éåã®ããã ã®éåãã®åå $`f`$ ãå®ç¾©ãã¾ãã
$`\quad f: X \to Y \In {\bf DisjFin}\H{{\bf G}}{\bf Set}`$
ãã®ãã¨ããé çªã«ç¢ºèªãã¦ããã°ç¤ºãã¾ãã
çµå±ã$`\cong`$ ãååå¤ã ã¨ãã¦æ¬¡ãè¨ãã¾ãã
$`\quad \mrm{SynCAT}(\Glob)^\mrm{op} \cong {\bf DisjFin}\H{{\bf G}}{\bf Set} \In {\bf CAT}\\
\quad {\bf DisjFin}\H{{\bf G}}{\bf Set} \cong {\bf Fin}\H{{\bf G}}{\bf Set}\In {\bf CAT}\\
\text{i.e.}\\
\quad \mrm{SynCAT}(\Glob)^\mrm{op} \cong {\bf Fin}\H{{\bf G}}{\bf Set}\In {\bf CAT}
`$