ãã®è¨äºã¯ããå¤æææå³è«ã¨ãã©ã±ããè¨æ³ãã®ç¶ãã§ãã追è¨ã«ããã«ã¯é·ãããã®ã§å¥è¨äºã¨ãã¾ããã$`\newcommand{\mrm}[1]{ \mathrm{#1} }
\newcommand{\cat}[1]{ \mathcal{#1} }
%\newcommand{\op}{ \mathrm{op} }
\newcommand{\In}{\text{ in }}
\newcommand{\dimU}[2]{ {{#1}\!\updownarrow^{#2}} }
%\newcommand{\Imp}{\Rightarrow}
%\newcommand{\u}[1]{\underline{#1}}
%\newcommand{\o}[1]{\overline{#1}}
%\newcommand{\twoto}{ \Rightarrow }
%\newcommand{\id}{ \mathrm{id} }
\newcommand{\hyp}{\text{ï¼} }
`$
å 容ï¼
- å¤æææå³è«ã»ãã©ã±ããã®åºæ¬æ¬¡å
- åºæ¬æ¬¡å 0 ã®ã¢ãã«ç©ºé
- åºæ¬æ¬¡å 1 ã®ã¢ãã«ç©ºé
- åºæ¬æ¬¡å 2 ã®ã¢ãã«ç©ºé
å¤æææå³è«ã»ãã©ã±ããã®åºæ¬æ¬¡å
ã空éãã¨ããè¨èã¯ããå¤æææå³è«ã¨ãã©ã±ããè¨æ³ // ã空éãã¨ããè¨èãã§èª¬æããç¨æ³ã§ä½¿ãã¾ãã
æå³è«ã¨ã¯ãææ¨ $`\Sigma`$ ã«å¯¾ãã¦ã¢ãã«ç©ºé $`\mrm{Model}(\Sigma, \cat{T})`$ ã対å¿ä»ããè¦åãä»æãã®ãã¨ã§ããå¤æææå³è«ã§ã¯ãã¢ãã«ç©ºéãn-åã®ãã 空éã¨ãã¦ä¸ãã¾ãããã®ã¨ãã®èªç¶æ° n ããå¤æææå³è«ã®åºæ¬æ¬¡å ãbasic dimensionãã¨å¼ã¶ãã¨ã«ãã¾ããåºæ¬æ¬¡å n ã§ãå¤æææå³è«ã®å¤§ããªæ çµã¿ã¨æ§è³ªã決ã¾ãã¾ãã
åºæ¬æ¬¡å n ã大ãããªãã¨ãã¢ãã«ç©ºéï¼n-åã®ãã 空éï¼ã®æ§é ãè¤éã«ãªããã¨ã¦ãæã«è² ãã¾ãããç¾å®çã»å®éçã«æ±ãã n ã¯ã0, 1, 2 ã§ãããããé å¼µãã° n = 3 ã¯ãªãã¨ããªãããç¥ãã¾ããã
åºæ¬æ¬¡å ãã¨ã«ãã¢ãã«ç©ºéã®å®ç¾©ã¯æ¬¡ã®ããã«ãªãã¾ãã
- $`\mrm{Model}(S, T) := [J(S), T]_0`$
- $`\mrm{Model}(\Sigma, \cat{T}) := [J(\Sigma), \cat{T}]_1`$
- $`\mrm{Model}(\Sigma, \cat{K}) := [J(\Sigma), \cat{K}]_2`$
å®éã«ã¯ããã©ã±ããã«è²ã ã¨é£¾ããä»ãã¾ãï¼å¾è¿°ï¼ãããã©ã«ãã«ã¼ã«ã§é£¾ããçç¥ã§ãã¾ããæåã»ãã©ã³ããå¤ãã¦ããã®ã¯ãç¿æ £ã¨æ°åã«ãããã®ã§ãä¸å¾ã«æ¬¡ã®ããã«æ¸ãã¦ããã¾ãã¾ããã
$`\quad \mrm{Model}(X, Y) := [J(X), Y]_n \:\text{ where } n = 0, 1, 2`$
$`J`$ ã¯ãææ¨ãn-åã«å¤æãã対å¿ã§ãDiagæ§æï¼ãDiagæ§æï¼ åè«çæ§ææ³ã®å æ¬çãã¬ã¼ã ã¯ã¼ã¯ã¨ãã¦ãåç §ï¼ã§ã¯ç·¨å ¥é¢æãincorporation functorãã¨å¼ãã§ãã¾ãããä¸è¬ã«ã¯é¢æã¨ãéããªãã®ã§ãç·¨å ¥åãincorporatorãã¨å¼ã¶ãã¨ã«ãã¾ãããï¼"incorporator" ã®è¾æ¸çæå³ã¨ã¯éãç¨æ³ã§ããï¼ã
åºæ¬æ¬¡å 0 ã®ã¢ãã«ç©ºé
åºæ¬æ¬¡å ã 0 ã®ã¨ããå¤æææå³è«ã®èå°ãã¢ã³ãã¨ã³ãã㯠$`0{\bf Cat}_{\#r}`$ ãã¤ã¾ãéåå $`{\bf Set}_{\#r}`$ ã§ãããããã£ã¦ãåºæ¬æ¬¡å 0 ã®ã¢ãã«ç©ºéã®å®ç¾©ã¯æ¬¡ã®ããã«ãªãã¾ãï¼$`\#r`$ ã¯ããã©ã«ãã«ã¨ãã¨ãã¦çç¥ï¼ã
$`\quad \mrm{Model}(S, T) := [J(S), T]_0 = {\bf Set}(J(S), T) = \mrm{Map}(J(S), T)`$
ããã§ã$`S`$ ã¯ãææ¨ãã¨å¼ã°ããããã«ã§ã$`T`$ ã¯éåã§ãã
ä¾ãã°ãèªç¶æ°ããææ¨ãã¨å¼ã¶ãã¨ã«ãã¦ãç·¨å ¥åã次ã®ããã«å®ç¾©ãã¾ãã
$`\quad {\bf N}\ni m \mapsto \{1, \cdots, m\} \in |{\bf Set}|`$
ãã®è¨å®ã«ãããã¢ãã«ç©ºéã¯ï¼
$`\quad \mrm{Model}(m, T) := [J(m), T]_0 = \mrm{Map}(\{1, \cdots, m\}, T) \cong T^m \;\in |{\bf Set}|
`$
ã¿ã¼ã²ãããéå $`T`$ ã§ããã¢ãã«ï¼ã¢ãã«ç©ºéã®è¦ç´ ï¼ã¯ã$`T`$ ã®è¦ç´ ãæåã¨ãã$`m`$-ã¿ãã«ã«ãªãã¾ãã
åºæ¬æ¬¡å 1 ã®ã¢ãã«ç©ºé
åºæ¬æ¬¡å ã 1 ã®ã¨ããå¤æææå³è«ã®èå°ãã¢ã³ãã¨ã³ããã¯ãåéã®2-å $`1{\bf Cat}_{\#r}`$ ã§ããåºæ¬æ¬¡å 1 ã®ã¢ãã«ç©ºéã®å®ç¾©ã¯æ¬¡ã®ããã«ãªãã¾ãã
$`\quad \mrm{Model}(\Sigma, \cat{T}) := {_j [J(\Sigma), \cat{T}]_{1, \#r} }`$
ããã§ã$`\Sigma`$ ã¯ãææ¨ãã¨å¼ã°ããããã«ã§ã$`\cat{T}`$ ã¯åã1-åãã§ãããã®ä»ã®ãã©ã¡ã¼ã¿ã¼ã飾ããã¯ï¼
- $`\#r`$ ã¯å®å®ãã°ãã¿ã³ãã£ã¼ã¯å®å®ãã®ã¬ãã«ã§ãã大ããªãµã¤ãºãå¿ è¦ãªã¨ãã¯ã$`r`$ ã®å¤ã大ããã¨ãã¾ãã
- $`j`$ ã¯åãè½ã¨ã次å ãtruncation dimensionãã§ããããã©ã«ã㯠$`j = 1`$ ã$`j = 0`$ ã®ã¨ãã¢ãã«ç©ºéã¯åãªãéåã«ãªãã¾ãã
ä¾ãã°ãã¢ãã¤ãããææ¨ãã¨å¼ã¶ãã¨ã«ãã¦ãç·¨å ¥åã¯ãã¢ãã¤ããåä¸å¯¾è±¡ã®åã¨ã¿ãªãé¢æã ã¨ãã¾ãã
$`\quad J : {\bf Mon} \to \dimU{\bf CAT}{1} \In \mathbb{CAT}`$
ãã®è¨å®ã«ãããã¢ãã«ç©ºéã¯ï¼
$`\quad \mrm{Model}(M, \cat{T}) := [J(M), \cat{T}]_{1, \#+1} = {\bf CAT}(J(M), \cat{T}) \;\in |{\bf CAT}|`$
ããã¯ãã¢ãã¤ãã®è¡¨ç¾ã®åã¨ãªãã¾ããã¿ã¼ã²ãããéååã«ããã¨ãã¢ãã¤ããèªå·±ååã¢ãã¤ãã§è¡¨ç¾ãããã¨ã«ãªãã¾ãã
$`\quad \mrm{Model}(M, {\bf Set}) := [J(M), {\bf Set}]_{1, \#+1} = {\bf CAT}(J(M), {\bf Set})\;\in |{\bf CAT}|`$
åºæ¬æ¬¡å 2 ã®ã¢ãã«ç©ºé
åºæ¬æ¬¡å ã 2 ã®ã¨ããå¤æææå³è«ã®èå°ãã¢ã³ãã¨ã³ããã¯ã2-åéã®3-å $`2{\bf Cat}_{\#r}`$ ã§ããåºæ¬æ¬¡å 2 ã®ã¢ãã«ç©ºéã®å®ç¾©ã¯æ¬¡ã®ããã«ãªãã¾ãã
$`\quad \mrm{Model}(\Sigma, \cat{K}) := {_j [J(\Sigma), \cat{K}]_{2, \#r}^{\alpha, \beta} }`$
ããã§ã$`\Sigma`$ ã¯ãææ¨ãã¨å¼ã°ããããã«ã§ã$`\cat{K}`$ ã¯2-åã§ãããã®ä»ã®ãã©ã¡ã¼ã¿ã¼ã飾ããã¯ï¼
- $`\#r`$ ã¯å®å®ãã°ãã¿ã³ãã£ã¼ã¯å®å®ãã®ã¬ãã«ã§ãã
- $`j`$ ã¯åãè½ã¨ã次å ãtruncation dimensionãã§ããããã©ã«ã㯠$`j = 2`$ ã$`j = 1`$ ã®ã¨ãã¢ãã«ç©ºéã¯åã1-åãã¨ãªãã$`j = 0`$ ã®ã¨ãã¢ãã«ç©ºéã¯åãªãéåã«ãªãã¾ãã
- $`\alpha`$ ã¯(2, 0)-å¤ææã®ããããloosenessãã®ç¨®é¡*1ã§ã$`\mrm{str}`$ï¼å³å¯ï¼ã$`\mrm{pseu}`$ï¼ã¹ã¼ãï¼ã$`\mrm{lax}`$ï¼ã©ãã¯ã¹ï¼ã$`\mrm{oplax}`$ï¼åã©ãã¯ã¹ï¼ã®ã©ããã§ãã
- $`\beta`$ ã¯(2, 1)-å¤ææã®æ¹åãdirectionãã§ã$`\mrm{fwd}`$ï¼åæ¹ï¼ã$`\mrm{back}`$ï¼å¾æ¹ï¼ã®ã©ã¡ããã§ããããã©ã«ã㯠$`\mrm{fwd}`$ ã
(2, 1)-å¤ææã®æ¹åï¼åæ¹ãå¾æ¹ï¼ã«ã¤ãã¦ã¯ã以ä¸ã®è¨äºãåç §ãã¦ãã ããã
ä¾ãã°ãçå¼ç2-ã°ã©ãï¼ãçå¼ç2-ã°ã©ãï¼2-åã®è¨è¿°ã®ããã«ï¼ãåç §ï¼ããææ¨ãã¨å¼ã¶ãã¨ã«ãã¦ãç·¨å ¥åã¯ãçå¼ç2-ã°ã©ããã2-åãæ§æï¼èªç±çæã¨åæ§æï¼ããé¢æã ã¨ãã¾ãã
$`\quad J : {\bf Eq2Graph} \to \dimU{\bf 2CAT}{1} \In \mathbb{CAT}`$
ãã®è¨å®ã«ãããã¢ãã«ç©ºéã®ä¸ä¾ã¯ï¼
$`\quad \mrm{Model}(\Sigma, \cat{K}) := {_1 [J(\Sigma), \cat{K}]_{2, \#+1}^{\mrm{str}}} = \dimU{{\bf 2CAT}^{\mrm{str}}(J(\Sigma), \cat{K})}{1} \;\in |{\bf CAT}|
`$
ããã¯ãçå¼ç2-ã°ã©ãã®è¡¨ç¾ãå®ç¾ãã®åã¨ãªãã¾ããã¿ã¼ã²ãããï¼å°ããï¼åéã®2-åã«ããã¨ãçå¼ç2-ã°ã©ããåï¼é¢æï¼èªç¶å¤æã§è¡¨ç¾ãå®ç¾ããããã¨ã«ãªãã¾ãã
$`\quad \mrm{Model}(\Sigma, {\bf Cat}) := {_1 [J(\Sigma), {\bf Cat}]_{2, \#+1}^\mrm{str}}
= \dimU{ {\bf 2CAT}^{\mrm{str}}(J(\Sigma), {\bf Cat})}{1} \;\in |{\bf CAT}|
`$
*1:ãããã¯ãã¤ããtightnessãã¨è¨ã£ã¦ãåãã§ãã