åè«ã§ã¯ã形容è©çæ¥é è¾ã¨ãã¦ãä½ï¼coï¼ãããåï¼biï¼ãããã使ãã¾ãããããããã®ä½¿ãæ¹ãçµ±ä¸ããã¦ããããã§ã¯ããã¾ãããç¨èªæ³ã¯æ´å²çãªç©ã¿éãã®ç£ç©ãªã®ã§ãå¿ ãããæ´åçã¨ã¯è¨ããªãã®ã§ãã
ã¢ãã¤ããä½ã¢ãã¤ããåã¢ãã¤ã
ãä½ãã¨ãåããã¹ãããªããå½¢ã§ä½¿ããã¦ããä¾ã«ããã¢ãã¤ãããä½ã¢ãã¤ãããåã¢ã¤ãããããã¾ãã(M, m, e) ãã¢ãã¤ãã¨ã¯ã乿³ m:MÃMâMãåä½ e:1âM ãçµåå¾ã¨åä½å¾ãæºãããã¨ã§ããä½ã¢ãã¤ã (M, δ, ε) ã¯ãã®å対æ¦å¿µã§ãä½ä¹æ³ δ:MâMÃMãä½åä½ Îµ:Mâ1 ãä½çµåå¾ã¨ä½åä½å¾ãæºããæ§é ç©ã§ããå°ã®ç¢å°ãã²ã£ããè¿ããå®ç¾©ã¨ãªãã¾ãã
ããã¦åã¢ãã¤ã (M, m, e, δ, ε) ã¨ã¯ã(M, m, e) ãã¢ãã¤ãã(M, δ, ε) ãä½ã¢ãã¤ãã§ãããããã«ã¢ãã¤ãã¨ä½ã¢ãã¤ããâå調ãã¦ããâãã¨ãè¦æ±ãã¾ããâå調âã¨ã¯ãä½ã¢ãã¤ãã®æ§é å° Î´, ε ãã¢ãã¤ãå°ï¼ã¢ãã¤ãæºååååï¼ã¨ãªã£ã¦ãããã¨ã§ãï¼éã«ããã¢ãã¤ãã®æ§é å°ãä½ã¢ãã¤ãå°ãã¨è¨ã£ã¦ãåãã§ãï¼ã
ããã¯ããä½ãã¨ãåããæ´åçã«ä½¿ããã¦ãããææ¬ã®ãããªä¾ã§ãã
ååã¨å颿
対象ã®éå*1ãXã§ããåã¯ããXãè¶³ã¨ããã¹ãã³ã®åãã«ãããã¢ãã¤ãã«ãªã£ã¦ãã¾ã -- é¡ä¼¼ã®è©±ã¯ããã¢ãã¤ãã¨åã¯ãã£ã±ãä¼¼ã¦ããããã«ãæ¸ãã¦ããã¾ããé©å®ãåç §ãã¦ã¿ã¦ãã ããã
Xãè¶³ã¨ããã¹ãã³ã¯ãleft:MâXãright:MâX ã®çµ (M, left, right) ã§ãã(M', left', right') ãããã²ã¨ã¤ã®ã¹ãã³ã ã¨ãã¦ãåå f:MâM' ã f;left' = leftãf;right' = right ã®ã¨ãã¹ãã³ã®ããã ã®å°ã¨ã¿ãªãã¾ããã¹ãã³ã®ç© MÃM' ã¯ãright:MâX 㨠left:M'âX ã®ãã¡ã¤ãã¼ç©ï¼å¼ãæ»ãï¼ã¨ãã¾ããå·¦å³ã®è¶³ã idX:XâX ã§ããã¹ãã³ãç©ã®åä½å¯¾è±¡ã¨ãªãã¾ãã
ä¸è¨ã®ã¢ãã¤ãåã®ãªãã§ãã¢ãã¤ã (M, m, e) ãèããã¨ãããã¯ãObj(C) = |C| = Xã Mor(C) = M ã¨ããåã¨ãªãã¾ãã乿³mãåã®çµåãåä½eãåã®æçãä¸ãã¾ãã
åãã¢ãã¤ãã¨ãã¦ä¸ããããã®ã§ãâä½åâã¯ä½ã¢ãã¤ããâååâã¯åã¢ãã¤ãã®å®ç¾©ãé©ç¨ããã°ãããã¨ã«ãªãã¾ããããããä½åã¯ãã¾ãèãããã¨ãããã¾ãããååã¯å ¨ç¶å¥ãªæå³ã§ä½¿ããã¦ãã¾ãã
ååï¼bicategoryï¼ã¯ã2次å ã®åã§ããn次å ã®åï¼n-åï¼ã®å®ç¾©ã«ã¯ã大å¥ããã¨å¼·ãçã¨å¼±ãçãããã¾ããå¼·ãï¼strong, strictï¼å®ç¾©ã¯æ¯è¼çç°¡åã§ãããä¸è¬æ§ã«æ¬ ãã¾ããå¼±ãï¼weak, laxï¼å®ç¾©ã¯ããä¸è¬çã§ãããå®ç¾©èªä½ãå°é£ãªèª²é¡ã¨ãªã£ã¦ãã¾ãããã ããn = 2 ã§ã®å®ç¾©ã¯ååã«åæããã¦ãã¾ããå¼·2-åãåã«2-åã¨å¼ã³ãå¼±2-åãååã¨å¼ãã§ããã®ã§ãã
ååã®ããã ã®æ§é ãä¿ã¤é¢æãå颿ã¨å¼ã¶ã¨æ°æã¡ãããã®ã§ãããæ®å¿µãªãããå颿ã¯ååã¨ä½ã®é¢ä¿ãããã¾ãããå颿ï¼bifunctorï¼ã¯ãF:CÃDâE ã®ãããªå½¢ããã颿ã®ãã¨ã§ããç¹ã«ãCÃCâC ããã使ããã¾ããäºé 颿ã¨å¼ã¶ã®ããµããããã¨æãã¾ãã
ç©ãä½ç©ãåç©ã¨ãã«ã«ãæ§
åã®ç´ç©ãåã«ç©ã¨å¼ã¶ãã¨ãããã¾ããä½ç©ã¯ç©ã®å対ãã¤ã¾ãç´åã§ããåç©ã¨ã¯ãç©ã§ããã¨åæã«ä½ç©ã§ããããããªã¢ãã¤ãç©ã§ãã
ç©ã¨çµå¯¾è±¡ï¼ç©ã®åä½å¯¾è±¡ï¼ãæã¤åããã«ã«ãåãä½ç©ã¨å§å¯¾è±¡ï¼ä½ç©ã®åä½å¯¾è±¡ï¼ãæã¤åãä½ãã«ã«ãåã§ãããã®å®ç¾©ã¯å対çã«ãªã£ã¦ãã¾ãã
åã¯é·ãããã ãé¶å¯¾è±¡ã¨åç©ãæã¤åãåãã«ã«ãåã¨å¼ã¶ãã®ã ã¨æã£ã¦ãã¾ãã -- ããããã¬ã¤ãªå®ç¾©ãããªãã§ãããããããã©ããéãããã§ãã
ããã³ã½ã«åå æ³åã¨ããã°ã©ã æå³è«ãããï¼
é¶å¯¾è±¡ã¨åç©ãæã¤åãªãååãããã¾ãããåå æ³åï¼semiadditive categoriesï¼ã§ãã
åã¯ãåãã«ã«ãåï¼bicartesian categoryï¼ã¨å¼ã¶ã®ãã¨æã£ã¦ããã®ã§ãããåãã«ã«ãåã®å®ç¾©ã«åç©ã¯åºã¦ããªãããã§ãã
åãã«ã«ãåã¨ã¯ãç©ã¨ä½ç©ã両æ¹ã¨ãæã¤åã§ãã£ã¦ããããåç©ã§ãããã¨ã¯è¦æ±ãã¦ãªãããã§ããé¶å¯¾è±¡ã¨åç©ãæã¤åã®é常ã®å¼ã³åã¯åå æ³åã§ããåç©ãæã¤åï¼category with biproductï¼ã¨ãåç©åï¼biproduct categoryï¼ã¨å¼ã¶äººããã¾ãã
å 群ãä½å 群ãåå 群
ã¢ãã¤ãMã¨éåSããã£ã¦ãåå α:MÃSâS ãé©å½ãªæ¡ä»¶ãæºããã¨ããã¢ãã¤ãMã®éåSã¸ã®ä½ç¨ï¼actionï¼ã¨å¼ã³ã¾ããåã«M-ä½ç¨ï¼M-actionï¼ã¨å¼ã¶ãã¨ãããã¾ããMÃSâS 㨠SÃMâS ãåºå¥ãããã¨ãã¯ãå·¦ä½ç¨ï¼left actionï¼ã¨å³ä½ç¨ï¼right actionï¼ã§ãã
ããã¯ãã«ç©ºéãç·å½¢ååããã³ã½ã«ç©ãã®ã¢ãã¤ãåã«ãããã¢ãã¤ãã¯ä»£æ°ï¼å¤å ç°ï¼ã¨å¼ã³ã¾ããåãåã«ãããä½ã¢ãã¤ãã¯ä½ä»£æ°ã§ãåã¢ãã¤ãã¯å代æ°ã§ãããã®å®ç¾©ã¯ã¹ãããªãã¦ãã¾ãã
ããã¯ãã«ç©ºéãç·å½¢ååããã³ã½ã«ç©ãã®ã¢ãã¤ãåã«ãããã¢ãã¤ãä½ç¨ã¯ã代æ°Aã«ãããã¯ãã«ç©ºéVã¸ã®ä½ç¨ã¨ãªãã¾ããããã¯ãVãå°ã§ããA-å 群ã«ãªãã¾ããå·¦å³ã®åºå¥ãããã¨ãã¯ãå·¦A-å 群ã¨å³A-å 群ã§ããå 群ã®å対ã¨ãã¦ãä½ä»£æ°ä¸ï¼å対ã ãããâä½ä»£æ°ä¸âï¼ï¼ã®ä½å 群ãå®ç¾©ã§ãã¾ãã
ãã¦ãåé¡ã¯åå 群ã§ããå代æ°ãä½ç¨ï¼ä½ä½ç¨ãããã¯ãã«ç©ºéã§ãå 群ãã¤ä½å 群ã¨ãªã£ã¦ãããã®ãåå 群ãªãæ°æã¡ãããã®ã§ãããããã§ã¯ããã¾ãããåå 群ï¼bimoduleï¼ã¯å³å 群ãã¤å·¦å 群ã§ãå·¦å³ã®ä½ç¨ãå調ãã¦ãããã®ã§ãã
å代æ°ãå·¦å³ããä½ç¨ï¼ä½ä½ç¨ãããã¯ãã«ç©ºéãä½ã¨å¼ã¹ã°ããã®ãï¼ å°ã£ã¦ãã¾ãã¾ããã
諦ãã¾ããã
ç¨èªæ³ã®ä¸æ´åãä¸çµ±ä¸ã¯ãå¦ç¿è ã®è² æ ã¨ãªãæ··ä¹±ããããã誤解ãééãã®åå ã«ããªãã¾ããããããå®çããå¼ã³åãå¤ããã®ã¯æ¥µãã¦å°é£ãªã®ã§ãçµå±ã¯è«¦ãã¦åãå ¥ãããããªãã®ã§ãããããã¢ããã§ã¯ããããæå³ã ããã³ããã§ã¯éããã¨æ³¨æãããããªãã§ããã
*1:åã®ãµã¤ãºã«ã¤ãã¦ã¯æ·±å ¥ãããªããã¨ã«ãã¾ããå°ããªåã ããèãããã¨ã«ãã¾ãããã