ãã®æ¬ãåè«ã主é¡ã¨ãããã®ã§ã¯ãªãã®ã§ãããã¿ã¤ãã«ã«ãåè«ããå«ã¾ããæ¥æ¬èªã®æ¸ç±ã¯ä»ã«ããã¯ã¬ã¼ã³ã®æ¬ï¼The Bookï¼ãããªããããªç¶æ³ã§ããããèªãã§ã¿ã価å¤ã¯ãããããã¨è³¼å ¥ã
ãããä¸è¬æ¸ç±ã§ã¯ãªãã¦éèªã®å¥åãªã®ã§ISBNã¯ä»ãã¦ãã¾ããã
è¨æå¥åã»æ°çç§å¦ãSGCã©ã¤ãã©ãª 52 ãããç工系ã®ããã® ãããã¸ã¼ã»åè«ã»å¾®åå¹¾ä½ ããããããâ å対æ§ã®è¦ç¹ãã â ãããå®ä¾¡1980åï¼æ¬ä½ä¾¡æ ¼1886åï¼ç¨ï¼ãè°·æ çå¾è![]()
èè ã»è°·æçå¾ããã¯ç©çå¦è ã§ãè¶£æ¨ã¨ãã¦ã¯ãç©çã®åºç¤ç¥èã¨ãã¦ããããã¸ã¼ã»åè«ã»å¾®åå¹¾ä½ãã解説ããã¨ãããã®ã§ãããããµãã¿ã¤ãã«ã¯ãå対æ§ã®è¦ç¹ããã -- å®éãå対æ§ã¸ã®è¨åãé »ç¹ã«ç»å ´ãã¾ããï¼ããã§ãå対æ§ã£ã¦ãããããããã£ã¦æ°ãããããï¼
åé ã§è¨ã£ãããã«ãåè«ã主é¡ã§ã¯ããã¾ããããã第5ç« åè«ãï¼åéã¯37ãã¼ã¸ï¼ãä¸å¿ã«ç´¹ä»ããæ°ä»ãããã¨ãªã©ãä»è¨ãã¾ãããã®ãããªï¼ç¬¬5ç« ããç®å½ã¦ã«ããï¼èªã¿æ¹ã¯ãèè ãæ³å®ãããã®ã¨ã¯éãã§ãããã -- å¾ã£ã¦ãè¦å½éããªæ¸è©ãããããªããã¨æ³¨æãã¦ããã¾ãã
å 容ï¼
- ã¾ãã第5ç« åè«ããã
- ã第3ç« ãã¢ããã¼ãã¨ã第4ç« ãã¢ãã¸ã¼ã
- ãã®ä»ã®é¨å
- ãªã·ã£ããªãæçã§æ¥½ããï¼
- 注æããæ¹ããããã¨
- ã¾ã¨ã
ã¾ãã第5ç« åè«ããã
æè¿æ¸ããã¨ã³ããªã¼å ã§ãåã¯æ¬¡ã®ããã«è¿°ã¹ã¾ããã
徿¥ãåã®äºä¾ã¨ããã¨ãéåã¨ååã®åãä½ç¸ç©ºéã¨é£ç¶ååã®åãã¢ã¼ãã«ç¾¤ã¨å æ³çï¼ç·å½¢ï¼ååã®åãªã©ãå¼ãåãã«åºããã¦ãã¾ããããããã®ä¾ãåã¯å人çã«âéãåâã¨å¼ãã§ãã¾ãã[â¦çç¥â¦] ç©çå¦ãã³ã³ãã¥ã¼ãã£ã³ã°ã»ãµã¤ã¨ã³ã¹ã§ãåã常ç¨ããã¤ã¤ãããæä¸ã«ãåã£ã±ãªã«ãããªéãä¾ãåºãã®ã¯ã¤ã«ã¬ãã¢ã³ã§ããããã
ãã®æ¬ã®ä¾ã¯âéãåâä¸å¿ã§ãã颿£åã¨é åºéåï¼åã¨ã¿ãªãï¼ãä¾ã«åºãã¦ãã¾ãããç»å ´ãã主ãªåã¯ï¼
- éåã®å
- ä½ç¸ç©ºéã®å
- 群ã®å
- ãã¯ãã«ç©ºéã®å
- å 群ã®å
åã¯âæå°éã®æºåã§åã«æ £ããâãã¨ãç®çã«èãã¦ããã®ã§ãâéãåâãé¿ãããã®ã§ããããã®æ¬ã«ããã第5ç« ã®ç®çï¼ä½ç½®ã¥ãããè¨ãã¨ãéãåãä¸å¿ã«ãªãã®ã¯å½ç¶ã§ãããã®ç®çã¨ã¯ããã¢ããã¼ï¼ç¬¬3ç« ã®è©±é¡ï¼ã¨ãã¢ãã¸ã¼ï¼ç¬¬2ç« ã®è©±é¡ï¼ãæ´çãã¦ãç·å½¢ä»£æ°ã®ä¸é¨ï¼ãã³ã½ã«ç©ã第6ç« ã§ä½¿ãï¼ããããã«å°å ¥ãããã¨ã§ãã
åè«ãããã¼ãªè©±é¡ã¨ãã¦ã¯ã颿ã¨ç´ç©ã»ç´åã解説ããã¦ãã¾ããäºä¾ãæ¯å©ããµãã ãã«ä½¿ã£ãä¸å¯§ãªèª¬æã§ããç¹ã«ãã5.9 é¨åéåã®åã«ãããç´ç©ã¨ç´åãã¯ãåè«çæ¦å¿µãé åºæ§é ã«é©ç¨ããã¨ã©ããªããããå°è±¡çã«ç¤ºãã¦ãã¾ãã
颿ã¯å°å ¥ãã¦ã¾ãããèªç¶å¤æã¾ã§ã¯å®ç¾©ãã¦ãã¾ããããã®ããã颿ã®èªç¶åå¤ãååå¤ã®æ¦å¿µã¯ä½¿ããªããã¨ã«ãªãã¾ããåéï¼ãã¼ã¸æ°ï¼çã«é£ããã®ã¯ãããã¾ãããåã»é¢æã»èªç¶å¤æã®ä¸ã¤çµã¿ã§ã¯ã³ã»ããã¨èãã¦ããåã¨ãã¦ã¯ãã䏿ºãæ®ãã¾ããï¼ã¨ããã¯ããã¦ã®åè«ãã§ã颿ã®å°å ¥ãããããã«é ããã¦ããåãè¨ãã®ããã³ã ãã©ããï¼
éä¼´ï¼adjunction, adjointï¼ã«ã¯è¨åãã¦ã¾ããããã5.6.6 å 群ã®çæé¢æã¨å¿å´é¢æãã§äºä¾ã説æãã¦ãã¾ããå¿å´é¢æã«é¢ãã¦ãã£ã³ã説å¾çã«èª¬æãã¦ããã®ã¯ããã§ããã
第5ç« ã®æå¾ã®7ãã¼ã¸ã¯ç·å½¢ä»£æ°ã«å ï¼ãï¼ã¦ããã¦ãã¾ããã5.10 ãã³ã½ã«ç©ãã®èª¬æã§ããããã¯å¿ ãããåè«ã使ãå¿ è¦ã¯ãªãã®ã§ãããåè«ã®æ çµã¿ã ã¨ã¢ãã³ãªå±éãã§ãã¾ããããã¨ãããã¾ã§ã®ä¾ã®ãªãã§ãã¯ãã«ç©ºéã®åãæ±ã£ã¦ããã®ã§ããã®èãã使ããªãã®ãã¢ãã¿ã¤ãã¤ããã
ã第3ç« ãã¢ããã¼ãã¨ã第4ç« ãã¢ãã¸ã¼ã
代æ°çä½ç¸å¹¾ä½å¦ã®ã·ã§ã¼ãã³ã¼ã¹ã§ãããããèªãã§ãããªãã¨ã颿ã®ä¸»ããä¾ï¼ç¬¬5ç« ï¼ã§ãããã¢ããã¼é¢æï¼ä½ç¸ç©ºéã®åâ群ã®åï¼ã¨ãã¢ãã¸ã¼é¢æï¼ä½ç¸ç©ºéã®åâå 群ã®åï¼ãçè§£ã§ãã¾ããããåè«ã®ããã«ä»£æ°çä½ç¸å¹¾ä½å¦ãå¦ã¶ãã®ã¯ãã¾ãè³æã§ããªãã®ã§ããã代æ°çä½ç¸å¹¾ä½å¦ãã©ããå¿ è¦ãªãããã¡ããç¥ã£ã¦ããã°ä¾¿å©ã§ãã
ãã®åéï¼21+42ãã¼ã¸ï¼ã®ã³ã¼ã¹ã¨ãã¦ã¯ããªããªãã®åä½ã ã¨æãã¾ããç´æã«è¨´ããå³ãå¤ç¨ãã¦ãå³å¯æ§ã¯ããªãç ç²ã«ãªã£ã¦ãã¾ãããå ·ä½ä¾ã®è§£èª¬ã詳ããã®ã§ãåãã£ãæ°åã«ãªãã¾ããå ·ä½ä¾ãæãã¦ãã3.7ç¯ã¨4.12ç¯ãã¸ãã¯ãªèªããã¨ããå§ããã¾ãã
ãã®ä»ã®é¨å
ã第1ç« å å ã¨å¤å»¶ã®å対æ§ãã¯ãéåãªã©ã®åºç¤ç¥èã®æºåã§ãããç« ã¿ã¤ãã«ã®éãããã®æ¬ã®ãã¼ããç¹ãè¾¼ã¾ãã¦ãã¾ããèªã¿é£ã°ããªãã»ããããã§ãããã
ã第2ç« ä½ç¸ç©ºéãã¯ä¸è¬ãããã¸ã¼ã®èª¬æãæ®éã«ééåãã¼ã¹ã®å®ç¾©ã§ãããè·é¢ãåæã®ããã·ããªãã§ããããªãééåã§ä½ç¸ãå°å ¥ããã¦ãé¢é£ããã®ã§ã¯ï¼ ãã®æ¬ã§ã¯å¤æ§ä½ããæ±ããªãã®ã§ãã¦ã¼ã¯ãªãã空éã®ééåï¼ééåãç¹ååæã使ã£ãé£ç¶æ§ãããã§æ¸ã¾ãã¦ãã¾ãæãããããã§ããããã©ã³ã¹ã®åããçã説æã¯é£ããã§ããã
ã第6ç« å¾®åå¹¾ä½ãã¯ã夿§ä½ã¨ã³ãã¢ãã¸ã¼ã®å ¥éã§ãå¾®ç©åã®å»¶é·ã¨ããæãã§ããè¨éããã³ã½ã«è¨ç®ã使ã£ããªã¼ãã³å¹¾ä½ã§ã¯ããã¾ããã
æå¾ã®ã第7ç« ç©çã¸ã®å¿ç¨ãã¯é»ç£æ°å¦ã¨ææç³»ã®åå¦ãã©ã¡ãããããã¾ã§ã«æºåããéå ·ã使ã£ãé®®ãããªå®å¼åã§ãæ³¥èãææ³ã§å¦ãã 人ã«ã¯âç®ããé±âããããã¾ããã*1
ãªã·ã£ããªãæçã§æ¥½ããï¼
åè«ã®ã·ã§ã¼ãã³ã¼ã¹ã»ããã¹ãã¨ãã¦ä½¿ãã®ã¯ã¡ã¨ãã³ããã§ãããç´æççè§£ãä¿ãå³ã¨ã¤ã¡ã¼ã¸è±ããªæ¥æ¬èªè¡¨ç¾ãæ¦å¿µï¼ã¢ã¤ãã£ã¢ã®èæ¯ãã³ã³ããä¼ãããã¨ããå§¿å¢ã«ã¯ã¨ã¦ã好æãæã¦ã¾ããèå³ãããæã ãæ¾ãèªã¿ãããã§ãããããæ¬¡ã«æãããªã·ã£ããªãé£ã°ãã®ã¯ã¢ãã¿ã¤ãã¤ã§ããï¼
- ã¾ããã
- 1.5 å¤å»¶ã¨å å
- 1.6 å対æ§
- 2.8 å³å½¢ã¨è¨éã®å対æ§
- 2.9 夿ã¨ä¸å¤å¼ã®å対æ§
- 4.4 ååã¨æèã¨æå³
- 4.13 ä½ç¸ä¸å¤éã¨ãã¦ã®ãã¢ãã¸ã¼ç¾¤ï¼æ¸¬å®ã¨ã¯ä½ã
- 7.4 å対çä¸ç観
ã2.7 次å ãã¯ã¡ãã£ã¨ããããããªãã3.10 ãã¢ã³ã«ã¬äºæ³ãã¯ã»ãã¨ã«ãã£ã¼ãã¬ã¤ã¯ã
注æããæ¹ããããã¨
è¨å·æ³ãç¨èªæ³ã§æ°ã«ãªãç¹ãå¤ãã£ãã®ã§ããã誤解ãæããããªã¨ããã ãææãã¾ãã
ã5.7 ç´ç©ãï¼139ãã¼ã¸ï¼ã§ãfã¨gããå®ã¾ããã¢ãªã³ã°ããfÃgãã¨è¡¨è¨ãã¦ã¾ãããé常 fÃg ã¯å¥ãªæå³ã§ä½¿ãã¾ãããã¢ãªã³ã°ã®æ¨æºçè¨å·ã¯ <f, g> ã§ããéååã§ã¯æ¬¡ã®ããã«ãªãã¾ãã
- <f, g>(a) = (f(a), g(a))
- (fÃg)((a, b)) = (f(a), g(b))
ã5.6.3 ãã¯ãã«ç©ºéã®åã«ãããå坾颿ãã5.6.5 å ç©ç©ºéã®åã«ãããé伴颿ãã§ä½¿ããã¦ãããå坾颿ããé伴颿ãã¨ããè¨èã¯ãï¼èè ãæå³ãã¦ããæå³ã§ï¼ä½¿ãã®ã¯åé¡ãããã¾ããç¹ã«ãé伴颿ãã¯ã¾ã£ããå¥ãªæå³ã§ä½¿ãããã®ãæ®éã§ãã
èè ã»è°·æããã®æå³ã§ã®å坾颿ï¼é伴颿ã¯ãã¹ã¿ã¼é¢æï¼ãã¬ã¼é¢æã¨ããæ¦å¿µã§å¤å°ã¯ä»£æ¿ã§ãã¾ã*2ããã¹ã¿ã¼é¢æï¼ãã¬ã¼é¢æãã¨ããç¨èªãåºãæ®åãã¦ãããã§ã¯ããã¾ããã*3ãå®ç¾©ãè¿°ã¹ã¦ããã¨ï¼
- èªå·±é¢æï¼endofunctorï¼F:CâCãã¹ã¿ã¼é¢æã¨ã¯ãåå¤ã§ãã F;F = IdCï¼ã¤ã³ã¼ã«ãèªç¶åå¤ã¨ããã°ããæ£ç¢ºï¼ã
- èªå·±é¢æï¼endofunctorï¼F:CâCããã¬ã¼é¢æã¨ã¯ãã¹ã¿ã¼é¢æã§ããã対象ã«å¯¾ãã¦ã¯æçã«ãªã£ã¦ããï¼idenity-on-objectsï¼ãã®ã
ãã¯ãã«ç©ºéã®å対ï¼éä¼´ã¯ãããããã¹ã¿ã¼é¢æï¼ãã¬ã¼é¢æã®å®ä¾ã§ããã
ã¾ã¨ã
ãã¾ãç´°ãããã¨ãè¨ããã«æã£åãæ©ã夿§ä½ä¸ã®è§£æå¦ãå¦ã³ãããã¤ãã§ã«åè«ã®âéãâä¾ãç¥ããããã¨ãã£ãç®çãªãã¨ã¦ãããããã¹ãã ã¨æãã¾ããï¼ç´°ãããã¨ãè¨ããªã代ããã«ãåèæç®ã®ã¨ããã«è©³ç´°ãå³å¯ãªãã¨ã¯ãã©ã®æç®ãè¦ãã¹ãããã®æ¡å ãããã¨è¯ãã£ãããªãï¼
ã¾ãããã®ã
ç§ã¯ï¼ãããã¸ã¼ãåè«ãå¾®åå¹¾ä½å¦ã¯ï¼ç´ 人ã«ã¯è¿å¯ãããããé«ç´ãªæ°å¦ãã§ã¯ãªãï¼ãã®ä¸çã«çèµ·ããåºæ¥äºãèªãããã®ã¨ã¦ãèªç¶ãªè¨èªã§ããï¼ãããèªåã®è¨èã¨ãã¦æ´»ç¨ã§ããããã«ãã¦ããã¨ï¼ãããããªãã¨ãçãçãã¨è¦ãã¦ãã¦æ¥½ããã§ããï¼ã¨ãããã¨ãä¼ãããã®ã§ããï¼
ã¯éæããã¦ããã¨æãã¾ãã
*1:æ³¥èãã¨ãããé£ã°ãã¦ãã«ãã³ã¤ã¤æ¹æ³ããå ¥ãã¨ãçµå±ã¯çè§£ã§ããªãã¾ã¾ããããã®å®ä¾ãåã§ãã
*2:è°·æããã®å坾颿ï¼é伴颿ã¯ç¹å®ã®é¢æãæãã¾ããããã«å¯¾ãã¦ãã¹ã¿ã¼é¢æï¼ãã¬ã¼é¢æã¯é¢æã®ç¨®é¡ãªã®ã§ãåç´ã«ç½®ãæãã¯ã§ãã¾ããã
*3:ãã¬ã¼é¢æï¼åã«ãã¬ã¼ã¨ãããã¨ãå¤ãï¼ã¯ãã¼ã¿ã¼ã»ã»ãªã³ã¬ã¼ã®ææ¡ãã¹ã¿ã¼é¢æï¼åã«ã¹ã¿ã¼ï¼ã¯J.P.ã¡ã¤ãªã©ã®ç¨æ³ã§ãããå®ã¯ã¡ã¤æ¬äººã¯ãã¬ã¼é¢æã®æå³ã§ã¹ã¿ã¼ã使ã£ã¦ãã¾ã :-< ãä»ã«ãã¹ã¿ã¼ãdualityã¨ãdualizerã¨å¼ã¶äººããã¾ãã