「実数体」を含む日記 RSS

はてなキーワード: 実数体とは

2026-01-21

[]

水曜日の22:44。

今日時計を見てから書き始めたわけではないが、結果としてこの時刻に落ち着いた。

はいつも通り起床して、動線の再最適化を頭の中で確認しながら歯磨きを128ストロークで終え、同じ温度紅茶を用意した。

 

午前中は完全に物理時間に割り当てた。超弦理論という呼び名自体がすでに粗い近似に過ぎないので、今日理論という語を使わず構造の話だけをすることにした。

具体的には、背景独立性を前提としない定式化をさら推し進め、時空を可微分多様体として仮定する癖を断ち切る作業だ。

p進化的な視点から見ると、連続体の極限は実数体である必然性がなく、むしろp進体上での解析の方が自然に現れる対称性が多い。

世界面の量子化をp進解析で再構成すると、摂動展開そのもの意味を失い、代わりにホモトピー型の不変量が前景化する。

そこでコボルディズム仮説を持ち込み、弦の相互作用時系列出来事としてではなく、境界付き多様体同値類として扱うと、散乱振幅は数ではなく元になる。

これは「計算できない」という欠点を持つが、同時に「矛盾しない」という利点を持つ。

ウィッテンがどう考えるかは知らない。理解主体特権化しない構造けが残る。その状態で午前は終了した。

 

昼にルームメイトキッチンコーヒーをこぼし、僕の動線に2センチの乱れが生じたので指摘したところ、「細かすぎる」と返された。

かいのではなく、誤差許容幅を明示しているだけだと言ったが、彼は聞いていなかった。

 

午後は研究ノートを閉じ、物理から意識的距離を取った。

趣味時間趣味として独立させないと、双方が劣化する。

MTGデッキを机に広げ、マナカーブと引きムラを統計的再確認した。

ここでは抽象化をやりすぎないことが重要で、確率確率として扱う。

友人Aが「そのカード弱いだろ」と言ってきたので、勝率分散を示して沈黙させた。沈黙同意とは限らないが、反論がないという点では十分だ。

 

夕方からFF14。固定パーティでの動きはすでに身体化されているので、今日は新しい回しを試さず、安定解を選択した。

友人Bは相変わらず必要最小限しか喋らず、その沈黙が全体のDPS底上げしている。

隣人は壁越しに笑い声を上げていたが、内容はどうでもよかったので無視した。

 

夜、食事を終えてからアメコミを数話読んだ。

連続性や正史に対する無頓着さは、物理から完全に切り離された場所でだけ許される贅沢だと思う。

 

そして今、22:58。

今日までの進捗としては、物理に関してはp進解析とコボルディズムを軸にした再定式化の見取り図がかなり明確になった。

これからやることは、その構造さら一般化し、数体すら前提にしないレベルまで抽象度を上げることだが、それは明日の午前に回す。

からは照明を落とし、明日のために睡眠に入る。

2026-01-09

抽象数学とか超弦理論とか

1. 存在論的錯誤から次元階層性へ

まず是正されるべきは、対象=ブレーン、射=弦という古典的実在論的な同定を圏論的出発点に据える錯誤である。この素朴な同一視は、現代的なコボルディズム仮説の文脈では理論整合性を欠いている。なぜなら、局所量子場理論(LQFT)の完全拡張において、対象や射は固定された「実体」ではなく、コボルディズム圏の階層構造における境界データ代数指標にすぎないかである

完全拡張TQFTの定義に基づけば、理論とは対称モノイド (∞, n)-圏 Bord_n から、ある「ターゲット (∞, n)-圏」 C への対称モノイド関手 Z: Bord_n → C そのものである。ここでは、対象(0-射)とは0次元の点という境界データであり、弦(1次元)は1-射、p-ブレーン(p+1次元の時空体積)は(p+1)-射として回収される。したがって、ブレーンを安易対象(0-射)と呼ぶ行為は、コボルディズム圏の階層構造を低次元へ射影し、高次コヒーレンス情報を不可逆的に欠損させるカテゴリー的退行に他ならない。

2. 弱∞-圏性の数学必然性

この誤謬は、弱∞-圏の必要性を弦の分岐・結合という物理直観から説明しようとする転倒した論理にも現れている。正しくはその逆である。弱∞-圏性は、場の理論要請する局所性と完全拡張から数学的に強制される構造である。弦の相互作用分岐は、高次射が満たすべき随伴性やコヒーレンス条件の物理的発現の一形態にすぎない。高次射は実在論的な相互作用の結果として生じるのではなく、理論局所であるための必然的帰結としてあらかじめ構造化されているのである

3. 幾何的ゲージ固定としての超弦理論

超弦理論一次元的に切り詰められた部分圏と見なす理解も、安定ホモトピー論および非アルキメデス幾何学の観点から修正を要する。超弦理論において起きているのは、単なる次元忘却ではない。それは、理論依拠する基礎的幾何学を実数体上の滑らかな多様体という特定の基礎トポスに固定する、いわば幾何的ゲージ固定である

ここでp進弦理論は決定的な教訓を与える。p進弦において世界面の解析構造は非アルキメデス的であり、実解析的な局所性は喪失している。にもかかわらず、散乱振幅の代数的骨格(ベネツィアーノ振幅等)が保存されるという事実は、弦理論本質特定幾何一次元性)にあるのではなく、振幅を生成する E∞ 環スペクトル 的な、より深層の安定ホモトピーデータにあることを示唆している。

4. Meta-TQFTとしてのM理論

この地平において、M理論超弦理論関係を反映や左随伴といった1-圏論的な語彙で記述するのは不適当であるM理論とは、特定の時空次元多様体構造に拘束されない、安定∞-圏あるいはスペクトル圏をターゲットとする Meta-TQFT と定義されるべきである

そこでは、弦が射である対象であるかという区別すら不変ではなく、Span構成や反復ループ空間構造(Ω^n)の下で、どの次元境界データとして選択するかというホモトピー的なゲージ選択残滓として、弦やブレーンの境界が析出する。

5. 双対性の再定義

T双対性やS双対性自然変換と呼称するのも階層が低い。双対性とは、単なる関手間の変換ではなく、ターゲットとなる理論値∞-圏そのもの自己同値、あるいはE∞ 環スペクトル自己同型として記述されるべきものである問題本質は可逆性の有無ではなく、どの安定コホモロジー理論、あるいはどの形式群が保存されるかという、安定ホモトピー圏における構造保存の様相にある。

総括

M理論圏論環境であり、超弦理論はその可視化であるという直観は、方向性においてのみ妥当であるが、定式化の厳密さを欠く。正しくは以下のように記述されるべきである

M理論とは、特定の時空幾何や基礎体に依存しない、完全拡張量子場理論が取り得る全空間を統御する安定∞-圏的インフラストラクチャであり、理論数学的に存立するための普遍的制約条件(コヒーレンス)の総体である

対して超弦理論とは、そのメタ構造に対し、実解析的時空、多様体局所性。摂動的可観測性という制約を課した際に析出する一つの表現である。p進弦理論やトポロジカル弦理論は、同じメタ構造から別の基礎トポス(あるいは安定ホモトピー論的データ)を選択した際に得られる、並列的な表現に他ならない。

したがって、両者の差異包含でも統一でもなく、どの圏論的・ホモトピー論的情報物理的実在として顕在化させるかという、観測基底の選択の差に他ならないのである

2026-01-02

低能順序馬鹿

https://b.hatena.ne.jp/entry/s/note.com/regulus_math/n/n35919e8e6e2d

fraction ともあれ4×5cm=5×4cmである理由を4×5=5×4だから、とガリレオ説明したら狂人扱いされるだろうな。正解は4×1.25=5以外あり得ない、と言うだろう。実数体Rと1次元ベクトル空間R^1の区別ができない低能も多そう。

交換性は、4x5cm=5cmx4は同じってことです。お前が言ってるのはイコール等価性でしかない。他人低能呼びしてる場合ではない。

2025-12-23

anond:20251223180238

実数四則演算を入れたもの実数

有理数四則演算を入れたもの有理数

実数同士で四則演算しても実数になり、有理数同士で四則演算しても有理数になることは自明にわかるだろう

でも無理数同士で四則演算したら無理数になるとは限らないよね。√2*√2は有理数から

から無理数体というのは(少なくとも普通は)無いと思うが

2025-08-19

[] p-adic String Theory(非アルキメデス的解析を基盤とする超弦理論模型

本日作業は、p-adic理論における散乱振幅の構造再確認し、通常の弦理論(Archimedeanな場合)との対比を整理すること。特に、Veneziano振幅のp-adic版がどのように形式化され、さらにAdelicな統一の枠組みの中で役割を果たすのかを見直す。

通常の弦理論における4点Veneziano振幅は次式で表される(実数体上)

A_∞(s, t) = ∫₀¹ x^(s−1) (1−x)^(t−1) dx = Γ(s) Γ(t) / Γ(s+t)

ここで s, t は Mandelstam 変数

一方、p-adic版では積分領域・測度が p進解析に置き換えられる。

A_p(s, t) = ∫_{ℚ_p} |x|_p^(s−1) |1−x|_p^(t−1) dx

この結果として、p進弦の振幅はベータ関数のp進類似物として定義される。計算すると、次のように局所ゼータ関数的な形になる。

A_p(s, t) = (1 − p^(−1)) / ((1 − p^(−s))(1 − p^(−t))(1 − p^(−u)))

ただし

u = −s − t

重要なのは、Archimedeanおよびp-adicな振幅がAdelicな整合性を持つこと。

A_∞(s, t) × ∏_p A_p(s, t) = 1

という積公式が成立する(Freund & Witten, 1987)。

これはリーマンゼータ関数のEuler積展開と同型の構造を持ち、数論的側面と弦理論的散乱の間に直接的な接点があることを示す。

p進場の物理解釈

p-adic string theoryは「異常な」場として扱われるが、通常の弦理論有効場の補完的な側面を提供している。

局所場の集合を全て集めた「Adelic統一」によって、物理的振幅が数論的整合性を持つことは、弦理論が単なる連続モデルではなく「数論幾何構造」に根ざしている可能性を強く示唆する。

熱力学的側面

p-adic tachyonの有効作用(非局所ラグランジアン)は、通常の弦理論の非局所場のモデル形式的に対応しており、近年の非局所宇宙論モデルやtachyon condensationの研究とも接続可能

次の課題

具体的に、p-adic string field theory における非局所作用

S = (1/g²) ∫ dᴰx [ −(1/2) φ · p^(−□/2) φ + (1/(p+1)) φ^(p+1) ]

の安定解を調べる。特に、tachyon vacuum の構造をArchimedeanな場合比較する。

AdS/CFT対応p-adic版(Bruhat–Tits木を境界とする幾何)の最新文献を精査する。

明日へTODO

1. Bruhat–Tits木を用いたp-adic AdS/CFTの基本計算を整理。

2. tachyon有効作用の安定点を数値的に探索(簡単Python実装テスト)。

3. Adelicな視点から物理的に実在するのはArchimedean世界だが、背後にp進世界が潜在している」という仮説をどう具体化できるか検討する。

備考

p-adic string theoryは長らく「数学的 curiosum」と見なされてきたが、AdS/CFTp-adicバージョンや非局所理論としての応用が現代文脈を与えている。

今後は物理予言性をどう導けるかが鍵。

2023-09-25

anond:20230925130841

最小値が定義できる集合は半順序集合

ただし最小値が存在しない場合がある(実数体R、実数の開区間(0, 1)など)

空でない任意の部分集合が最小値を持つ集合は整列集合(自然数Nなど)

2021-07-18

anond:20210718160818

逆に聞くけど、質問質問で返すのは詭弁のガイドライン抵触するのは承知の上で、貴方は「計算機実数を扱っているという前提が間違っている」のを知っているのか?

逆に何でその程度のことすら知らないと想定してんだよ。意味不明すぎるだろ。そもそも計算機実数を扱っているという前提」なんて存在しねーぞ。お前は実数定義を知ってるのか?有理数を完備化したもんだぞ?有理数稠密だということを理解してるのか?そもそも自然界に「実数」が存在してるなんて証拠は一個でもあるのか?物理学実数体でないと致命的におかしくなるケースが一個でもあるのか?

たとえば、カオス理論が起きるのは「計算機科学で物理学と同じように小数を扱ったから」なのだけど、あれは古典物理学を学んてきた人がおかすミスなんだよ。あれはローレンツ有効数字というまやかしに引っかかって起きたのと、十進法と二進法互換性が無いことに起因したケアレスミスなんだよ。俺はカオス理論否定するのじゃなくて、カオス理論も偶然が生んだ産物だという上で言っているのよ、念の為

意味不明カオスは初期値に鋭敏だというだけだぞ(細かいことを言えば色々あるが)。計算機がどうとか関係ねーし有理数実数関係ねー。パイこね変換のカオスは離散系だろうが。何言ってんだ。

お前はまともに勉強したこともないのに聞き齧った単語でそれっぽいこと言ってるだけなんだよ。まともに勉強してから喋れ。

2016-10-26

0.999…=1は公理じゃねぇぇぇぇ

0.999…が1と等しい事がわからん中学生がいる、っていう増田エントリ[1]があって、

それに対してわっと氏が「等しいのは公理から」って返答[2]している。

[1] http://anond.hatelabo.jp/20161024040352

[2] http://watto.hatenablog.com/entry/2016/10/25/133000

いや、ちげーよ!!というのが本稿の趣旨である

ちなみに私は[1]の増田とは別人。

わっと氏の主張のどこが間違っているか述べる前に、

じゃぁ、0.999…=1となる本当の理由は何か、というのを先に書いておく。

そもそもなんとなくごまかして「0.999…」と書くことで9が無限に続いている事を表現しているが、

実際には人間の有限の寿命無限個の数字を書けるわけもない(ヒルベルトの「有限の立場」)。

なんで、実際には有限個数であるn個の9を書いて、そのnをどんどん大きくしているのである

で、nを大きくするたびに、0.999…が1に近づくというのが、「0.999…=1」の正しい数学意味である

高校数学をわかってる人向けに書くと、ようするにnを無限大飛ばしときの極限を考えているわけ。

で、わっと氏の何が間違っているのか。

おめー、0.999…=1が実数体公理だってんなら、有理数体や複素数体の上では「0.999…=1」は

成り立たないってのか!?

当然そんなわけない。

まり実数体公理の中でもっと重要公理であるデデキントの切断公理が満たされないケース(有理数体)や

順序の公理が満たされないケース(複素数体)でも「0.999…=1」は成り立っているわけで、

「0.999…=1は実数体公理」という主張はおかしい(注)。

じゃぁ何が重要なのか。

答えは実数体の「距離構造である(更に弱く「位相構造」でも良い)。

先に極限の話をしたとき、0.999…の桁数nを大きくすると、1に「近づく」って述べた。

「近づく」ってのは「距離が小さくなる」ってことなんで、距離関係しているわけだ。

わっと氏が触れているε-N0式の極限の定義でも、

二点間の距離を使って極限を定義してますしね。

実際、実数体距離として通常の距離とは別のものをいれると、

0.999…は1に近づくとは限らない。

単純な例としては実数xとyの距離d(x,y)を

d(x,y) = 0 if x=y

d(x,y) = 1 if x≠y

定義する(離散距離)と0.999…(n桁)と1との距離

nがいくつであっても常に1なので、nを無限大飛ばしても

0.999…は1に収束しない。

(注)もちろん、実数に関する性質を導くには必ず実数公理を使うわけだから

そういう意味では「0.999…=1」の証明実数公理を使うことにはなるんだけど、

そんなこと言い出したら「πは超越数」とか「5次方程式は解の公式を持たない」とか

実数に関する全ての定理実数公理を使っていることになるでしょ。

★追記

わっと氏の新しい記事を見て、わっと氏が何を勘違いしているのかわかった。

勘違いしているのは、デデキント切断公理の意義である

切断公理の意義は何らかの実数存在性を示せる事だ。

例えば

0.123456789101112131415....

という小数を考えたとき、この小数の桁数を無限飛ばした極限の

実数チャンパーノウン定数)が存在する事を示すには切断公理必要となる。

しかし0.999...の場合収束先の実数である1が存在することは

(体の公理より)自明なので、切断公理必要ないのである

記事の「これはデデキントを遠目で見てます」という記述を見る限り、

わっと氏は無限絡みで実数直線を2つにぶった切るときは常に切断公理

必要になると思っているようだが、これは正しくない。

上述したようにこのケースはデデキント切断公理必要ではないので。

デデキント切断公理は「実数直線を2つにぶった切るとどちらかに必ず端点が

存在する」という趣旨公理であり、この最後の「存在する」が必要になる場合に使われる

公理なのである

2015-01-03

http://anond.hatelabo.jp/20150103233230

自然数ってのはなんで特別なんだろうな。

実数体という意味では、1もπも全く対等だと思うんだけど、

りんごがπ個存在する」ことはこの宇宙では起こり得ない。

その違いを決めているのは一体なんなんだろう。

2013-12-23

http://anond.hatelabo.jp/20131223091934

フーリエ変換ぐらいなら数式使うまでもないとしか

しろ数式(実数体)でうまく表現できない対象に適用できなくなるだろ。

 
ログイン ユーザー登録
ようこそ ゲスト さん