はてなキーワード: 実数体とは
水曜日の22:44。
今日は時計を見てから書き始めたわけではないが、結果としてこの時刻に落ち着いた。
朝はいつも通り起床して、動線の再最適化を頭の中で確認しながら歯磨きを128ストロークで終え、同じ温度の紅茶を用意した。
午前中は完全に物理の時間に割り当てた。超弦理論という呼び名自体がすでに粗い近似に過ぎないので、今日は理論という語を使わず、構造の話だけをすることにした。
具体的には、背景独立性を前提としない定式化をさらに推し進め、時空を可微分多様体として仮定する癖を断ち切る作業だ。
p進化的な視点から見ると、連続体の極限は実数体である必然性がなく、むしろp進体上での解析の方が自然に現れる対称性が多い。
世界面の量子化をp進解析で再構成すると、摂動展開そのものが意味を失い、代わりにホモトピー型の不変量が前景化する。
そこでコボルディズム仮説を持ち込み、弦の相互作用を時系列の出来事としてではなく、境界付き多様体の同値類として扱うと、散乱振幅は数ではなく元になる。
これは「計算できない」という欠点を持つが、同時に「矛盾しない」という利点を持つ。
ウィッテンがどう考えるかは知らない。理解主体を特権化しない構造だけが残る。その状態で午前は終了した。
昼にルームメイトがキッチンでコーヒーをこぼし、僕の動線に2センチの乱れが生じたので指摘したところ、「細かすぎる」と返された。
細かいのではなく、誤差許容幅を明示しているだけだと言ったが、彼は聞いていなかった。
MTGのデッキを机に広げ、マナカーブと引きムラを統計的に再確認した。
ここでは抽象化をやりすぎないことが重要で、確率は確率として扱う。
友人Aが「そのカード弱いだろ」と言ってきたので、勝率の分散を示して沈黙させた。沈黙は同意とは限らないが、反論がないという点では十分だ。
夕方からはFF14。固定パーティでの動きはすでに身体化されているので、今日は新しい回しを試さず、安定解を選択した。
友人Bは相変わらず必要最小限しか喋らず、その沈黙が全体のDPSを底上げしている。
隣人は壁越しに笑い声を上げていたが、内容はどうでもよかったので無視した。
連続性や正史に対する無頓着さは、物理から完全に切り離された場所でだけ許される贅沢だと思う。
そして今、22:58。
今日までの進捗としては、物理に関してはp進解析とコボルディズムを軸にした再定式化の見取り図がかなり明確になった。
これからやることは、その構造をさらに一般化し、数体すら前提にしないレベルまで抽象度を上げることだが、それは明日の午前に回す。
まず是正されるべきは、対象=ブレーン、射=弦という古典的・実在論的な同定を圏論的出発点に据える錯誤である。この素朴な同一視は、現代的なコボルディズム仮説の文脈では理論的整合性を欠いている。なぜなら、局所量子場理論(LQFT)の完全拡張において、対象や射は固定された「実体」ではなく、コボルディズム圏の階層構造における境界データの代数的指標にすぎないからである。
完全拡張TQFTの定義に基づけば、理論とは対称モノイド (∞, n)-圏 Bord_n から、ある「ターゲット (∞, n)-圏」 C への対称モノイド関手 Z: Bord_n → C そのものである。ここでは、対象(0-射)とは0次元の点という境界データであり、弦(1次元)は1-射、p-ブレーン(p+1次元の時空体積)は(p+1)-射として回収される。したがって、ブレーンを安易に対象(0-射)と呼ぶ行為は、コボルディズム圏の階層構造を低次元へ射影し、高次コヒーレンス情報を不可逆的に欠損させるカテゴリー的退行に他ならない。
この誤謬は、弱∞-圏の必要性を弦の分岐・結合という物理的直観から説明しようとする転倒した論理にも現れている。正しくはその逆である。弱∞-圏性は、場の理論が要請する局所性と完全拡張性から数学的に強制される構造である。弦の相互作用や分岐は、高次射が満たすべき随伴性やコヒーレンス条件の物理的発現の一形態にすぎない。高次射は実在論的な相互作用の結果として生じるのではなく、理論が局所的であるための必然的帰結としてあらかじめ構造化されているのである。
超弦理論を一次元的に切り詰められた部分圏と見なす理解も、安定ホモトピー論および非アルキメデス幾何学の観点から修正を要する。超弦理論において起きているのは、単なる次元の忘却ではない。それは、理論が依拠する基礎的幾何学を実数体上の滑らかな多様体という特定の基礎トポスに固定する、いわば幾何的ゲージ固定である。
ここでp進弦理論は決定的な教訓を与える。p進弦において世界面の解析構造は非アルキメデス的であり、実解析的な局所性は喪失している。にもかかわらず、散乱振幅の代数的骨格(ベネツィアーノ振幅等)が保存されるという事実は、弦理論の本質が特定の幾何(一次元性)にあるのではなく、振幅を生成する E∞ 環スペクトル 的な、より深層の安定ホモトピー的データにあることを示唆している。
この地平において、M理論と超弦理論の関係を反映や左随伴といった1-圏論的な語彙で記述するのは不適当である。M理論とは、特定の時空次元や多様体構造に拘束されない、安定∞-圏あるいはスペクトル圏をターゲットとする Meta-TQFT と定義されるべきである。
そこでは、弦が射であるか対象であるかという区別すら不変ではなく、Span構成や反復ループ空間構造(Ω^n)の下で、どの次元を境界データとして選択するかというホモトピー的なゲージ選択の残滓として、弦やブレーンの境界が析出する。
T双対性やS双対性を自然変換と呼称するのも階層が低い。双対性とは、単なる関手間の変換ではなく、ターゲットとなる理論値∞-圏そのものの自己同値、あるいはE∞ 環スペクトルの自己同型として記述されるべきものである。問題の本質は可逆性の有無ではなく、どの安定コホモロジー理論、あるいはどの形式群が保存されるかという、安定ホモトピー圏における構造保存の様相にある。
M理論は圏論的環境であり、超弦理論はその可視化であるという直観は、方向性においてのみ妥当であるが、定式化の厳密さを欠く。正しくは以下のように記述されるべきである。
M理論とは、特定の時空幾何や基礎体に依存しない、完全拡張量子場理論が取り得る全空間を統御する安定∞-圏的インフラストラクチャであり、理論が数学的に存立するための普遍的制約条件(コヒーレンス)の総体である。
対して超弦理論とは、そのメタ構造に対し、実解析的時空、多様体的局所性。摂動的可観測性という制約を課した際に析出する一つの表現である。p進弦理論やトポロジカル弦理論は、同じメタ構造から別の基礎トポス(あるいは安定ホモトピー論的データ)を選択した際に得られる、並列的な表現に他ならない。
したがって、両者の差異は包含でも統一でもなく、どの圏論的・ホモトピー論的情報を物理的実在として顕在化させるかという、観測基底の選択の差に他ならないのである。
本日の作業は、p-adic弦理論における散乱振幅の構造を再確認し、通常の弦理論(Archimedeanな場合)との対比を整理すること。特に、Veneziano振幅のp-adic版がどのように形式化され、さらにAdelicな統一の枠組みの中で役割を果たすのかを見直す。
通常の弦理論における4点Veneziano振幅は次式で表される(実数体上)
A_∞(s, t) = ∫₀¹ x^(s−1) (1−x)^(t−1) dx = Γ(s) Γ(t) / Γ(s+t)
ここで s, t は Mandelstam 変数。
一方、p-adic版では積分領域・測度が p進解析に置き換えられる。
A_p(s, t) = ∫_{ℚ_p} |x|_p^(s−1) |1−x|_p^(t−1) dx
この結果として、p進弦の振幅はベータ関数のp進類似物として定義される。計算すると、次のように局所ゼータ関数的な形になる。
A_p(s, t) = (1 − p^(−1)) / ((1 − p^(−s))(1 − p^(−t))(1 − p^(−u)))
ただし
u = −s − t
重要なのは、Archimedeanおよびp-adicな振幅がAdelicな整合性を持つこと。
A_∞(s, t) × ∏_p A_p(s, t) = 1
という積公式が成立する(Freund & Witten, 1987)。
これはリーマンゼータ関数のEuler積展開と同型の構造を持ち、数論的側面と弦理論的散乱の間に直接的な接点があることを示す。
p-adic string theoryは「異常な」場として扱われるが、通常の弦理論の有効場の補完的な側面を提供している。
局所場の集合を全て集めた「Adelic統一」によって、物理的振幅が数論的整合性を持つことは、弦理論が単なる連続体モデルではなく「数論幾何的構造」に根ざしている可能性を強く示唆する。
p-adic tachyonの有効作用(非局所ラグランジアン)は、通常の弦理論の非局所場のモデルと形式的に対応しており、近年の非局所的宇宙論モデルやtachyon condensationの研究とも接続可能。
具体的に、p-adic string field theory における非局所作用
S = (1/g²) ∫ dᴰx [ −(1/2) φ · p^(−□/2) φ + (1/(p+1)) φ^(p+1) ]
の安定解を調べる。特に、tachyon vacuum の構造をArchimedeanな場合と比較する。
AdS/CFT対応のp-adic版(Bruhat–Tits木を境界とする幾何)の最新文献を精査する。
1. Bruhat–Tits木を用いたp-adic AdS/CFTの基本計算を整理。
2. tachyon有効作用の安定点を数値的に探索(簡単なPython実装でテスト)。
3. Adelicな視点から「物理的に実在するのはArchimedean世界だが、背後にp進世界が潜在している」という仮説をどう具体化できるか検討する。
p-adic string theoryは長らく「数学的 curiosum」と見なされてきたが、AdS/CFTのp-adicバージョンや非局所場理論としての応用が現代的文脈を与えている。
逆に聞くけど、質問を質問で返すのは詭弁のガイドラインに抵触するのは承知の上で、貴方は「計算機が実数を扱っているという前提が間違っている」のを知っているのか?
逆に何でその程度のことすら知らないと想定してんだよ。意味不明すぎるだろ。そもそも「計算機が実数を扱っているという前提」なんて存在しねーぞ。お前は実数の定義を知ってるのか?有理数を完備化したもんだぞ?有理数が稠密だということを理解してるのか?そもそも自然界に「実数」が存在してるなんて証拠は一個でもあるのか?物理学が実数体でないと致命的におかしくなるケースが一個でもあるのか?
たとえば、カオス理論が起きるのは「計算機科学で物理学と同じように小数を扱ったから」なのだけど、あれは古典物理学を学んてきた人がおかすミスなんだよ。あれはローレンツが有効数字というまやかしに引っかかって起きたのと、十進法と二進法の互換性が無いことに起因したケアレスミスなんだよ。俺はカオス理論を否定するのじゃなくて、カオス理論も偶然が生んだ産物だという上で言っているのよ、念の為。
意味不明。カオスは初期値に鋭敏だというだけだぞ(細かいことを言えば色々あるが)。計算機がどうとか関係ねーし有理数も実数も関係ねー。パイこね変換のカオスは離散系だろうが。何言ってんだ。
0.999…が1と等しい事がわからん中学生がいる、っていう増田のエントリ[1]があって、
それに対してわっと氏が「等しいのは公理だから」って返答[2]している。
[1] http://anond.hatelabo.jp/20161024040352
[2] http://watto.hatenablog.com/entry/2016/10/25/133000
ちなみに私は[1]の増田とは別人。
わっと氏の主張のどこが間違っているか述べる前に、
じゃぁ、0.999…=1となる本当の理由は何か、というのを先に書いておく。
そもそもなんとなくごまかして「0.999…」と書くことで9が無限に続いている事を表現しているが、
実際には人間の有限の寿命で無限個の数字を書けるわけもない(ヒルベルトの「有限の立場」)。
なんで、実際には有限個数であるn個の9を書いて、そのnをどんどん大きくしているのである。
で、nを大きくするたびに、0.999…が1に近づくというのが、「0.999…=1」の正しい数学的意味である。
高校数学をわかってる人向けに書くと、ようするにnを無限大に飛ばしたときの極限を考えているわけ。
で、わっと氏の何が間違っているのか。
おめー、0.999…=1が実数体の公理だってんなら、有理数体や複素数体の上では「0.999…=1」は
成り立たないってのか!?
当然そんなわけない。
つまり実数体の公理の中でもっとも重要な公理であるデデキントの切断公理が満たされないケース(有理数体)や
順序の公理が満たされないケース(複素数体)でも「0.999…=1」は成り立っているわけで、
「0.999…=1は実数体の公理」という主張はおかしい(注)。
じゃぁ何が重要なのか。
答えは実数体の「距離構造」である(更に弱く「位相構造」でも良い)。
先に極限の話をしたとき、0.999…の桁数nを大きくすると、1に「近づく」って述べた。
「近づく」ってのは「距離が小さくなる」ってことなんで、距離が関係しているわけだ。
わっと氏が触れているε-N0式の極限の定義でも、
0.999…は1に近づくとは限らない。
d(x,y) = 0 if x=y
d(x,y) = 1 if x≠y
0.999…は1に収束しない。
(注)もちろん、実数に関する性質を導くには必ず実数の公理を使うわけだから、
そういう意味では「0.999…=1」の証明に実数の公理を使うことにはなるんだけど、
そんなこと言い出したら「πは超越数」とか「5次方程式は解の公式を持たない」とか
実数に関する全ての定理は実数の公理を使っていることになるでしょ。
★追記
わっと氏の新しい記事を見て、わっと氏が何を勘違いしているのかわかった。
例えば
0.123456789101112131415....
という小数を考えたとき、この小数の桁数を無限に飛ばした極限の
実数(チャンパーノウン定数)が存在する事を示すには切断公理が必要となる。
しかし0.999...の場合は収束先の実数である1が存在することは
新記事の「これはデデキントを遠目で見てます」という記述を見る限り、
わっと氏は無限絡みで実数直線を2つにぶった切るときは常に切断公理が
必要になると思っているようだが、これは正しくない。
上述したようにこのケースはデデキント切断公理は必要ではないので。
デデキント切断公理は「実数直線を2つにぶった切るとどちらかに必ず端点が