The Qiita Advent Calendar 2019 is supported by the following companies, organizations, and services.
The Qiita Advent Calendar 2019 is supported by the following companies, organizations, and services.
åãã« ãµã¤ãã¦ãºã»ã©ãã®å æã§ãã DNNï¼deep neural network : 深層å¦ç¿ï¼ã¨ããã°GPUãå°ç¨ããã»ããµã使ãã®ã主æµã§ãã ãããIntelã¯CPUã§é«éã«DNNãããããã®ã©ã¤ãã©ãª MKL-DNN ãæä¾ãã¦ãã¾ãã MKL-DNNã¯Intelã®ææ°CPUã«å¯¾å¿ãããªã¼ãã³ã½ã¼ã¹ã½ããã¦ã§ã¢ãªã®ã§ã³ã¼ããè¦ãã¨åå¼·ã«ãªãã¾ãã ããã§ã¯MKL-DNNã§ä½¿ããã¦ãããã¯ããã¯ãããã¤ãç´¹ä»ãã¾ãã æ¦è¦ MKL-DNNã®ç´¹ä» Xbyakã®ç´¹ä» å¼ã³åºãè¦ç´ å§ç¸®displacement ReLU exp å ç© vpdpbusd ãã£ãã·ã¥ã³ã³ããã¼ã« æ³å®èªè C++11ã¨x64 CPUã®ã¢ã»ã³ããªè¨èªã®ç¥èãããç¨åº¦ä»®å®ãã¾ãã æ©æ¢°å¦ç¿ã«ã¤ãã¦ã¯ãã®ç¥èããªãã¦ãæé©åææ³ãç解ã§ãããããæå°éã®èª¬æããã¾ãã MKL-DNNã®ç¹é· ã¾ãMKL-DNNã®
ã¼ãããä½ããã£ã¼ãã©ã¼ãã³ã°ã¨ããæ¬ãæã¯ãã£ããããããYoutubeã§è§£èª¬ãã¦ããç¥åç»ãè¦ã¤ããã®ã§ç´¹ä»ãã¹ã©ã¤ãã¨ã³ã¼ãã§ä¸¡æ¹è§£èª¬ãã¦ããããã ã Deep Learning 第1å:ã¾ãã¯ç°å¢æ§ç¯ã ï¼Pythonã®å®è¡ç°å¢ã¨å種ã©ã¤ãã©ãªã®èª¬æããã¦ããããã ãããã¯ä»¥åç´¹ä»ããGoogle Colaboratoryã§ç¨æã§ãããã ãã®åç»ã§å¦ã¶ã㨠ã»ç°å¢æ§ç¯ã®æ¹æ³ ã»numpyã®åºç¤ Deep Learning 第2å:ãã¼ã»ãããã³ãå®è£ ããã以ä¸ã®å 容ãå¦ã¶ã ãã¼ã»ãããã³ ãã¥ã¼ãã³ã¢ãã« ANDåè·¯ ORåè·¯ XANDåè·¯ XORåè·¯
2018/4/13ãå¡©å°»SIPããã«ã¦adamrockerããããæããéå¬ããRecap of TensorFlow Devsummit 2018 in ä¿¡å·ã®ã¾ã¨ãã«ãªãã¾ã
(注ï¼2017/04/08ãããã ãããã£ã¼ãããã¯ãå ã«ç¿»è¨³ãä¿®æ£ãããã¾ããã @liaoyuanw ) ãã®è¨äºã¯ãç§ã®èæ¸ ãDeep Learning with Pythonï¼Pythonã使ã£ããã£ã¼ãã©ã¼ãã³ã°ï¼ã ï¼Manning Publicationså)ã®ç¬¬9ç« 2é¨ãç·¨éãããã®ã§ããç¾ç¶ã®ãã£ã¼ãã©ã¼ãã³ã°ã®éçã¨ãã®å°æ¥ã«é¢ãã2ã¤ã®ã·ãªã¼ãºè¨äºã®ä¸é¨ã§ãã æ¢ã«ãã£ã¼ãã©ã¼ãã³ã°ã«æ·±ã親ããã§ãã人ã対象ã«ãã¦ãã¾ãï¼ä¾ï¼èæ¸ã®1ç« ãã8ç« ãèªãã 人ï¼ãèªè ã«ç¸å½ã®äºåç¥èããããã®ã¨æ³å®ãã¦æ¸ããããã®ã§ãã ãã£ã¼ãã©ã¼ãã³ã°ï¼ãå¹¾ä½å¦çè¦³å¯ ãã£ã¼ãã©ã¼ãã³ã°ã«é¢ãã¦ä½ããé©ããããã®ã¯ããã®ã·ã³ãã«ãã§ãã10å¹´åã¯ãæ©æ¢°èªèã®åé¡ã«ããã¦ãå¾é éä¸æ³ã§è¨ç·´ããã·ã³ãã«ãªãã©ã¡ããªãã¯ã¢ãã«ã使ããããã»ã©è¦äºãªçµæã«å°éãããªã©èª°ãæ³åãã¾ããã§ããã
TL;DR Deep Learning with Python ãèªãã ããæ¸ããã¦ããæ¬ã§ãç¹ã«åå¦è ãä¸ç´è ã Keras ã使ã£ã¦ã¢ãã«æ§ç¯ãã§ããããã«ãªãã«ã¯æé© æ±ã£ã¦ãããããã¯èªä½ã¯ä»ã®æ¬ã¨æ¯ã¹ã¦ããã¾ã§å¤ãã£ã¦ããªãããä¸ã¤ä¸ã¤ã®è³ªã¯é«ã å人çã«ã¯ Keras ã®å®è£ ã®è©±ãªã©ããã£ã¨ãã¦æ¬²ããã£ã Keras ä½è ã® Chollet æ°ãæ¸ãã deep learning æ¬ã¨ãããã¨ã§ãã©ããªå 容ãªãã ããã¨æã£ã¦èªãã§ã¿ãã çµè«ããè¨ãã¨ã¨ã¦ãããæ¸ãã¦ããæ¬ã§ã対象èªè 㯠Keras ã使ã£ã¦ deep learning ãå§ãããï¼å§ãã¦ã¿ãï¼ã¨ãã人ãã¨æãã ã©ããªçµç·¯ã§åºããæ¬ãã¨ãããããã®ã¯å ¨ç¶ç¥ããªãããdeep learning ã使ããããã«ãªãããã® getting started ã¨ãªã決å®çãæ¸ããããã¨ããå°è±¡ãåããã èªåã¨ãã¦ã¯
ã³ã³ãã¥ã¼ã¿ã®å°éæ¸ã¨ãã¦ã¯ç°ä¾ã®å¤§ããããè¨é²ãããã¼ãããä½ãDeep Learningãã®ç¶ç·¨ã®å ¬éã¬ãã¥ã¼ãè¡ãã¾ãã ã¬ãã¥ã¼æéã¯2æ28æ¥ï¼æ°´ï¼ãã4æ13æ¥ï¼éï¼ã¾ã§ã®1ã¶æåã§ãã ã¬ãã¥ã¼ã¯Dropboxã®ã³ã¡ã³ãæ©è½ãå©ç¨ãã¦è¡ãã¾ãã Dropboxã¢ã«ã¦ã³ãããæã¡ã®æ¹ã¯ã©ãªãã§ãåå å¯è½ã§ãã https://www.dropbox.com/sh/ev6a40fbagw2qtz/AABF2zxkvo12H7-b25eYxsBKa?dl=0 ããã ããææå 容ã¯ãèè ã¨åºç社ã§ç¸è«ã®ããåæ¨é¸æãã¦å稿ã¸åæ ããã¦ããã ãã¾ãã ã¬ãã¥ã¼ã«è²¢ç®ãã¦ããã ããæ¹ã®ãååï¼ãããã¯ã¢ã«ã¦ã³ãåï¼ããæ¬æ¸ã®ãè¬è¾ãã®æ¬ã«è¨è¼ããã¦ããã ãã¾ãããã¡ãããè¨è¼ã®æç¡ã¯ã¬ãã¥ã¼ã¢ã®ææã«å¾ãã¾ãã ãªããã¼ãããä½ãDeep Learning â·ãã¯ãå ¨å½ã®æåæ¸åºãããA
TJO @TJO_datasci arXivã®åè«æèªãã æã¯æ°å¼ããã£ã±ãåãããªãã¦ç®ãã赤ãå¡©æ°´æµãã¦ããã©ããã® slideshareã ã¨ããªãã®é¨åãåãã£ã¦æ¬å½ã«é¢ç½ãã£ããããããDeepã®çè«çç 究ãèªã¿ããã£ããã ã¨å®æãããæé£ããããã¾ã / 深層å¦ç¿ã«ããéæ»ãããªé¢æ°ã®æ¨å® slideshare.net/masaakiimaizum⦠2018-02-15 21:18:27 TJO @TJO_datasci ããã¦ãããèªãã§ãããããå¾æ¥ææ³ã§ã¯ã¾ãã§ç²¾åº¦ãåºãªããDeepã ã¨ä½æ ãããªãã®ç²¾åº¦ãåºããã¼ã¿ã»ããããã©ããªãã®ã§ããå¯è½æ§ããããã®ãã³ããå¾ãããæ°ããããå¼ç¤¾ã®Cloudããã°ã§ãç´¹ä»ããã¦ããäºä¾ãã¾ãã«ãããªãã ãã©ãããããããéæ»ãããªè¦ç´ ããã£ãã®ãããããªã 2018-02-15 21:23:51
Voltaã§æ°ãã«è¿½å ãããTensorã³ã¢ V100ã§æ°è¨ãããTensorã³ã¢ã§ãããã4è¡4åã®è¡åAã¨Bãæãããããè¡åCã«è¶³ãããã¨ããæ¼ç®ãè¡ããè¡åAã¨Bã¯FP16å½¢å¼ãè¡åCã¨æ¼ç®çµæã®è¡åDã¯FP16ãããã¯FP32å½¢å¼ã§ããã V100 GPUã®SMã¯ãTensorã³ã¢ã®è¿½å ã«ãããã£ã¼ãã©ã¼ãã³ã°æ§è½ãå¤§å¹ ã«å¼ãä¸ããSIMTã¢ãã«ã®æ¹è¯ãªã©ããã°ã©ã ã®çç£æ§ãåä¸ããããããå½ä»¤ã»ãããä¸æ°ãã ãã£ã¼ãã©ã¼ãã³ã°ã®è¨ç®ã§ã¯ãAãBã®ç©ãFP16ã§è¨ç®ãã¦ããçµæãç´¯ç©ããCã®è¨ç®ãFP32ã§è¡ãã°ãå¿ è¦ãªç²¾åº¦ã¯ç¢ºä¿ã§ããã¨ãããã¨ãããTensorã³ã¢ã¯ä¹ç®ã¯FP16ãå ç®ã¯FP32ã¨ããæ··å精度ã®æ¼ç®ãè¡ã£ã¦ããã Tensorã³ã¢ã¯ãå ¨ä½ã§128æ¼ç®ãå¿ è¦ã¨ãããã®è¨ç®ã1ãµã¤ã¯ã«ã§å®è¡ã§ããããã®ãããV100 GPUã¯ãé常ã«é«ããã£ã¼ãã©ã¼ãã³ã°æ§è½ã
ããã«ã¡ã¯ã次ä¸ä»£ã·ã¹ãã ç 究室ã®JK (ç·)ã§ãã çªç¶ã§ããæ¸ç±ã®ãã¼ãããä½ãDeep Learningãèªã¿ã¾ãããï¼åºç¤ããã¯ãªã¢ã«èª¬æããã¦ãã¦ãå人çã«ã¯ã¨ã¦ãé¢ç½ãã£ãã§ããããã¾ã§LSTM, å¼·åå¦ç¿ã®è¨äºãæ¸ãã¦ãã¾ããããä»åã¯ãã®æ¬ã«ãªãã£ã¦Deep Learningã®åºç¤ã®ãã¡ããæ·±ãç解ãç®æããDeep Learningã®å¯è¦åã«ç¦ç¹ããã¦ããã¨æãã¾ãã ã¡ãªã¿ã«ä»åã®å 容ã®codeã¯ãããã«ä¸ãã¦ããã¾ããã 0. å¯è¦åã®ã¢ããã¼ã·ã§ã³ æè¿ã®Deep Learningã®ãã¬ã¼ã ã¯ã¼ã¯ã¯å å®ãã¦ãã¦ãç°¡åã«åãããããã«ãªãã¾ããããã§ãåããããã©ç解ããæ°ãããªããã£ã¦äººãå¤ãã®ã§ã¯ãªãã§ããããï¼ãã®çç±ã®ä¸ã¤ããDeep Learningããã©ãã¯ããã¯ã¹åãã¦ãããã¨ã ã¨æãã¾ããç°¡åã«åããããã¨ã®å¯ä½ç¨ã ã¨æãã¾ãããã¤ã³ããããã¼ã¿ã¨æ師
æ¬ããã°ã©ã ã®æ大ã®ç¹å¾´ã®ä¸ã¤ã¯ãå ¨ã¦ã®ãããã¯ã«ã¤ãã¦ãæ¼ç¿ãä¸å¿ã«æ§æããã¦ããç¹ã§ããå®éã«æãåãããªããç解ãé²ãããã¨ã§ãå¹çããå¦ç¿ãããã¨ãã§ãã¾ãã å®éã«ã¢ãã«ãå¦ç¿ãããªããæè¡ãç¿å¾ããæ¬æ ¼çãªæ¼ç¿å 容ã¨ãªã£ã¦ãã¾ããDeep Learningã¯ãã¢ãã«ãå®éã«å¦ç¿ããæ§åã観測ãããã©ã¡ã¼ã¿ã調æ´ãããã¨ã§ã¢ããªã±ã¼ã·ã§ã³ã«å¿ããããã©ã¼ãã³ã¹æ大åãè¡ããã¨ãé常ã«éè¦ãªæè¡ã§ããããã®ä¸é£ã®æµããå ¨ã¦ã®æ¼ç¿ã§çµé¨ããªããéè¦ãªè¦ç´ ã身ã«ã¤ãããã¨ãå¯è½ã§ãã
(Photo by Pixabay) ããã¯ãã ã®å¹´æ«ãã¨ã ã§ããä½ã²ã¨ã¤ã¨ãã¦é«åº¦ã«æè¡çãªè©±ããªããã°ãããã«ãªã話ãããã¾ããã®ã§äºããäºæ¿ãã ããã æãæµããã®ã¯æ©ããã®ã§ãåãã¤ã³ãã¹ããªã¼ã«ããããã¼ã¿åæã®ä»äºãæãããããã«ãªã£ã¦ãã5å¹´ç®ã®ä»å¹´ãã»ã©ãªãçµãããã¨ãã¦ãã¾ããä¸è¨ã®è¨äºã§ã¯ãã®éã«ãã£ãæ§ã ãªåºæ¥äºãæ¯ãè¿ãã¾ããããä»åã¯ç¾å¨ã®ä»äºã®ããæ¹ã«ã¤ãã¦æè¿æãã¦ãããã¨ãå¾ç¶ãªãã¾ã¾ã«æ¸ãæ£ããã¦ã¿ãããã¨æãã¾ãã æ³åãè¶ ãã¦é¥ãã«é²ãã§ãããæå 端ã ä»ã®æ¥ç*1ã§æå 端ã¨è¨ãã°ä¸è¬ã«ã¯Deep Learningã¨ãããNetã®ãã¨ãæããã¨ãå¤ãã§ããã以åãä»ã®ç¶æ³ã¯ã俺ãèããæå¼·ã®ãããã¯ã¼ã¯é¸æ権ãã ãã¨è¨ã£ãéãã®ææ§ã ã¨å人çã«ã¯èªèãã¦ãã¾ã*2ã ãã®æå³ã§ã¯ä»å¹´ãæå 端ã®ç 究éçºã®é²åã®ã¹ãã¼ãã¯ã¨ã©ã¾ããã¨ãç¥ããªãã¨ããå°è±¡ã§
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? æ¨å¹´ã«å¼ãç¶ãDeep Learningãã£ã¦ãã Advent Calendar 2017ã®25æ¥ç®ã®æ»ãè¾¼ã¿è¨äºã§ï¼ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®æ´å²ããã³ææ°ã®ç 究ååã«ã¤ãã¦ã®ãµã¼ãã¤ã§ãï¼2017å¹´12æã®PRMUç 究ä¼ã«ã¦çºè¡¨ããï¼ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã«ã¤ãã¦ã®ãµã¼ãã¤ããã¼ã¹ã«è¿½è¨ãè¡ã£ããã®ã«ãªãã¾ãï¼ ã¯ããã« ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ (Convolutional Neural Networks; CNN) ï¼ä»¥éCNNï¼ã¯ï¼ä¸»ã«ç»åèªèã«å©ç¨ããããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®ä¸ç¨®ã§ããï¼CNNã®ååã¯
ãã®è¨äºã¯ãã¯ã³ã´ã¢ããã³ãã«ã¬ã³ãã¼26æ¥ç®(延é·æ¦!)ã®è¨äºã§ãã ç§ã¯ãDwango Media Villageã§ç 究ãè¡ãªã£ã¦ããå¤æ¾¤ã§ããDwango Media Villageã¯ããã¯ã³ã´ã®æ©æ¢°å¦ç¿ç³»ã®ç 究ã¨ãã®å¿ç¨ãè¡ãªã£ã¦ãããã¼ã ã§ãã ä»åç´¹ä»ããã®ã¯ç½é»æ¼«ç»ã«Deep Learningã§çè²ããç 究ã§ããããã«ãå¿ç¨ã¨ãã¦ããã¸ã§ã¯ã¿ãç¨ãã¦å®ä¸çã®ã¤ã©ã¹ãã«ãçè²çµæãæå½±ã§ããããã«ãã¾ããã åºæ¥ããã¨ä¸è¦§ æ¬è¨äºã§ã¯ã以ä¸ã®2ã¤ã®äºæãã©ã®ãããªãã¯ããã¯ãå ã«å¯è½ã«ãªã£ããã®ãã¯ãªããæ¸ãã¦ããã¾ãã Deep Learningã§ç½é»æ¼«ç»ï¼ã¿ã¤ãã«ï¼åç §ç»åãå ¥åã¨ããç½é»æ¼«ç»ã®èªåçè² Deep Learning+Jetsonã§å®ä¸çã«æãããã¤ã©ã¹ãã®è²å¡ã(èªåçè²çµæã®ããã¸ã§ã¯ã·ã§ã³) åç»ãã! Comicolorization æè¿ãã¿ã¤ã®ãã³
7/13ãæ½é¸ãééãããæ¹ã«ã¯ãã¡ã¼ã«ã«ã¦ãªã³ã©ã¤ã³ãã¹ãã®ãæ¡å ããéããã¾ããã è¿·æã¡ã¼ã«ãã©ã«ãã«å ¥ã£ã¦ããå ´åãããã¾ãã®ã§ãã確èªããé¡ããã¾ãã å½å7/12ã15ã«ãªã³ã©ã¤ã³ãã¹ããå®æ½ããäºå®ã§ããããæ³å®ä»¥ä¸ã®ãç³ãè¾¼ã¿ããã£ããããã¹ã±ã¸ã¥ã¼ã«ãé ãã¦ããã¾ãã ä»åã¯ãã¾ãæåã«æ½é¸ãè¡ããå½é¸ãããæ¹ã«ã®ã¿ãªã³ã©ã¤ã³ãã¹ããåãã¦ããã ãéå¶ã¨ããã¦ããã ãã¾ãã æ½é¸ã®çµæã®çºè¡¨ã¯ããªã³ã©ã¤ã³ãã¹ãã®ãæ¡å ã¡ã¼ã«ï¼7/13éä¿¡äºå®ï¼ããã£ã¦ããããã¦ããã ãã¾ãã ãªã³ã©ã¤ã³ãã¹ãã¯7/14ã16ãäºå®ãã¦ããã¾ãã DL4USã¯ï¼é«åº¦ãªDeep Learningæè¡è ãè²æãããã¨ãç®çã¨ããï¼ã¢ããªã±ã¼ã·ã§ã³æåã®ç¡åãªã³ã©ã¤ã³æè²ããã°ã©ã ã§ãï¼3å¹´éã§1,000人ã®Deep Learningæè¡è ãè²æãï¼äººå·¥ç¥è½åéã«ãããæ¥æ¬ã®ç«¶äºåãåä¸ãããã¨
DeepMindããAlphaGo Zeroã¨åãæ¹æ³ã§ããã§ã¹ã¨å°æ£ã§ãããã¬ãã«ãä¸åã£ãã¨ããè«æãçºè¡¨ããã¾ããã [1712.01815] Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm ãã¡ã¤ã³ç¥èãç¨ããªãã¹ã¯ã©ããããå¼·åå¦ç¿ã®ã¿ã§éæãã¦ãã¾ãã å°æ£ããã§ã¹ã¯ã¢ã³ãã«ã«ãæ¨æ¢ç´¢(MCTS)ã¯åãããMini-Maxæ¢ç´¢ã®æ¹ãè¯ãã¨ããã®ã常èã®ããã«ãªã£ã¦ãã¾ããããå°æ£ããã§ã¹ã§ããã£ã¼ãã©ã¼ãã³ã°ã¨çµã¿åããããã¨ã§MCTSãæå¹ã§ãããã¨ã示ãããã¨ããã®ã大ããªææã ã¨æãã¾ãã ã¾ã å ¨é¨èªã¿åãã¦ãã¾ããããæ°ã«ãªãåæããèªãã å 容ãæ¸ãã¦ããã¾ãã å人çã«ä¸çªæ°ã«ãªãã®ã¯ãå ¥åç¹å¾´ã¨åºåã©ãã«ã®è¡¨ç¾æ¹æ³ã§ãã ãã§ã¹ã«ã¤ãã¦ãæ¸ã
Example results on several image restoration problems. We use deep neural networks, but we never train/pretrain them using datasets. We use them as a structured image prior. Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example ima
ç§ã2012å¹´ã«ãã¥ã¼ã©ã«ãããã®é襲ï¼å½æã®ã³ã¡ã³ãï¼ã¨ããã®ãããã°ã«æ¸ãã¦ããã¡ããã©5å¹´ãçµã¡ã¾ãããå½æã¯ã¾ã Deep Learningã¨ããè¨èãåºã¾ã£ã¦ããããAIã¨ããè¨èã使ãã®ãæããããããªæ代ã§ãããç§éããPreferred Networksï¼PFNï¼ãç«ã¡ä¸ãIoTãAIã«ãã©ã¼ã«ã¹ããã®ã¯ãããã1å¹´åå¾ã®ãã¨ã§ãã ãã®5å¹´ãæ¯ãè¿ãè¯ãã¿ã¤ãã³ã°ã ã¨æãã®ã§èãã¦ã¿ããã¨æãã¾ãã 1. Deep Learning Tsunami å¤ãã®åéããã®5å¹´éã§Deep Learningã®å¤§ããªå½±é¿ãåããåéç¹åã®ææ³ãDeep Learningãã¼ã¹ã®ææ³ã«ç½®ãæãããã¨ã«ãªãã¾ãããNLPï¼èªç¶è¨èªå¦çï¼ã®éé®ã§ããChris ManningææãNLPã§èµ·ããç¾è±¡ããDeep Learning Tsunamiã[link] ã¨ãã³ãã®è¡æã®å¤§ããã表ãã¦
7æ20æ¥ãIntel (Movidius) ãUSBæ¥ç¶ã¿ã¤ãã®ã¹ãã£ãã¯åãã£ã¼ããã¥ã¼ã©ã«ãããã¯ã¼ã¯å¦çç¨ã¢ã¯ã»ã©ã¬ã¼ã¿ãMovidius Neural Compute Stickããçºè¡¨ãã¾ããã Intelãæ¿å®1ä¸å以ä¸ã®USBåDeep Learningç¨ç«¯æ«ãMovidius Neural Compute Stickããçºå£² : Gigazine Intel Democratizes Deep Learning Application Development with Launch of Movidius Neural Compute Stick | Intel Newsroom ãããã¯ããã¼ã¸ NCSã¯ãDeep Learningã«ç¹åããå°ç¨ããããMyriad 2ããæè¼ããããå¤ä»ãã®æ¼ç®è£ ç½®ã§ããUSBãã¼ãã«æ¿ãã ãã§Deep Learningã®æ¨è«å¦çãå®
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}