ç”°ä¸å®‡ã€Œã€Žåœ°çƒã®å¹³å‡æ°—温ã€ã¯æ„味ãŒãªã„ã€ã®ç„¡æ„味
ã€2009å¹´6月28日】地çƒä¸Šã«ç„¡æ•°ã®è¦³æ¸¬åœ°ç‚¹ãŒã‚ã‚Šã€ãã®å„地点間ã®æ°—温ãŒå¤šæ§˜ãªå·®ç•°ã‚’æŒã¡ã€å¤šç¨®å¤šæ§˜ãªæ°—候ãŒç™ºç”Ÿã—ã¦ã€ãã‚ŒãŒæ¬¡ã®æ—¥ã®æ°—温や気候ã«åæ˜ ã•ã‚Œã¦ã„ã連続的ãªç¾è±¡ãŒã‚ã‚Šã€ãã®ç·ä½“ãŒåœ°çƒã®æ°—候ã§ã‚る。ã“ã®éžå¸¸ã«è¤‡é›‘ãªåœ°çƒã®æ°—候ã®çŠ¶æ…‹ã‚’ã€å„地点ã®æ°—温ã®å¹³å‡å€¤ã«ã‚ˆã£ã¦ä»£è¡¨ã•ã›ã‚‹ã“ã¨ã¯ã€éžç¾å®Ÿçš„ã§ã‚る。アンダーセンらã¯ã€Œå„地点ã®æ°—温ã®å¹³å‡å€¤ãŒåœ°çƒã‚’代表ã™ã‚‹æ°—温ã ã¨è€ƒãˆã‚‹ã“ã¨ã¯ã€é›»è©±å¸³ã«è¼‰ã£ã¦ã„ã‚‹ã™ã¹ã¦ã®é›»è©±ç•ªå·ã‚’åˆç®—ã—ã¦ç®—出ã—ãŸå¹³å‡å€¤ãŒã€ãã®ç”ºã‚’代表ã™ã‚‹é›»è©±ç•ªå·ã§ã‚ã‚‹ã¨è€ƒãˆã‚‹ã®ã¨åŒã˜ç¨®é¡žã®ã€é “çæ¼¢ãªè©±ã§ã‚ã‚‹ã€ã¨ä¸»å¼µã—ã¦ã„る。
é “çæ¼¢ãªã®ã¯ã€ã‚‚ã¡ã‚ã‚“ç”°ä¸å®‡æ°æœ¬äººã 。ã“ã®è¨˜äº‹ã¯æœ‰æ–™ã ãŒã€é‡‘払ã£ã¦ã¾ã§èªã‚€ä¾¡å€¤ãªã„ã®ã§ã€ã‚ªãƒªã‚¸ãƒŠãƒ«ã® Bjarne Andresen, a professor at The Niels Bohr Institute, University of Copenhagenã«ã¤ã„ã¦ã®è¨˜äº‹ã€Researchers Question Validity Of A 'Global Temperature'ScienceDaily (Mar. 18, 2007) ã ã‘èªã‚“ã 。
熱力å¦ã®æ•™æŽˆãªã®ã§ã€ã‚‚ã£ã±ã‚‰åŸºæœ¬çš„ãªç†±åŠ›å¦ã‚’è«–ã˜ã¦ã„る。ãã‚Œã ã‘ã 。件ã®å€‹æ‰€ã¯ã€
Average without meaning
He explains that while it is possible to treat temperature statistically locally, it is meaningless to talk about a a global temperature for Earth. The Globe consists of a huge number of components which one cannot just add up and average. That would correspond to calculating the average phone number in the phone book.
地çƒã¯è†¨å¤§ãªæ•°ã®æ§‹æˆè¦ç´ ã‹ã‚‰æˆã£ã¦ãŠã‚Šã€ãれらã¯åˆç®—ã™ã‚‹äº‹ã‚‚å‡ã™äº‹ã‚‚ã§ããªã„。ãã‚Œã¯é›»è©±å¸³ã®å¹³å‡é›»è©±ç•ªå·ã‚’求ã‚るよã†ãªã®ã ――ã¨ã„ã†ã“ã¨ã€‚
ã“れ自体ã€åœ°çƒæ¸©æš–化ã¨ã¯ä½•ã®é–¢ä¿‚ã‚‚ãªã„。電話帳(地çƒ)ã¨é›»è©±ç•ªå·ã®é›†ç©ã®å¹³å‡ã¯é–¢ä¿‚ãªã„ã¨ã§ã‚‚言ã„ãŸã„ã®ã ã‚ã†ã€‚ã“れ自体大ã—ã¦æ„味ãªã„ã—ã€å´ã£ã¦èª¤è§£ã‚’æ‹›ãã‚„ã™ã„。次ã«ã€
Many averages
A further problem with the extensive use of 'the global temperature' is that there are many ways of calculating average temperatures.
Example 1: Take two equally large glasses of water. The water in one glass is 0 degrees, in the other it is 100 degrees. Adding these two numbers and dividing by two yields an average temperature of 50 degrees. That is called the arithmetic average.
Example 2: Take the same two glasses of water at 0 degrees and 100 degrees, respectively. Now multiply those two numbers and take the square root, and you will arrive at an average temperature of 46 degrees. This is called the geometric average. (The calculation is done in degrees Kelvin which are then converted back to degrees Celsius.)
è¦ã™ã‚‹ã«å¹³å‡ã‚’åŠ ç®—å¹³å‡ã§æ±‚ã‚ã‚‹ã‹å¹¾ä½•å¹³å‡ã§æ±‚ã‚ã‚‹ã‹ã®é•ã„。
例1ã®å ´åˆã€æ‘‚æ°0度ã¨100度ã®å¹³å‡æ¸©åº¦ã¯å˜ç´”ã«æ‘‚æ°50度。
例2ã®å ´åˆã€çµ¶å¯¾æ¸©åº¦ã®ã‚±ãƒ«ãƒ“ンã§è¨ˆç®—ã™ã‚‹ã®ã§ã€
æ‘‚æ°0度(ç´„273度)×摂æ°100度(373度)ã®âˆšï¼319Kï¼æ‘‚æ°46度
å•é¡Œã¯æ¬¡ã®å€‹æ‰€ã ã‚ã†ã€‚
Claims of disaster?
These are but two examples of ways to calculate averages. They are all equally correct, but one needs a solid physical reason to choose one above another. Depending on the averaging method used, the same set of measured data can simultaneously show an upward trend and a downward trend in average temperature. Thus claims of disaster may be a consequence of which averaging method has been used, the researchers point out.
両方ã¨ã‚‚å¹³ç‰ã«æ£ã—ã„ãŒã€ã©ã£ã¡ã‚’採用ã™ã‚‹ã‹ç‰©ç†å¦çš„ã«ç¢ºå›ºãŸã‚‹ç†ç”±ãŒå¿…è¦ã 。平å‡åŒ–ã®æ–¹æ³•æ¬¡ç¬¬ã§åŒã˜è¨ˆæ¸¬ãƒ‡ãƒ¼ã‚¿ã®é›†åˆãŒå¹³å‡æ°—温を上昇傾å‘ã«ã‚‚下é™å‚¾å‘ã«ã‚‚示ã™ã“ã¨ã‚‚ã‚る。ã¤ã¾ã‚Šç½åŽ„ã‚’èµ·ã“ã™ã¨ã„ã†ä¸»å¼µã¯å¹³å‡ã®ç®—出法ã®çµæžœã‹ã‚‚ã—ã‚Œãªã„――。
ã“ã“ã ã‘èªã‚€ã¨ã€Œã‚ã‚ã€å¹³å‡æ°—温ã®ä¸Šæ˜‡ã¯å¹³å‡ã®ç®—出方法次第ã§ã€åœ°çƒæ¸©æš–化も算出方法ã®é•ã„ã§ä½œã‚‰ã‚ŒãŸã‚‚ã®ã§æ„味ãŒãªã„ã€ãªã‚“ã¦æ—©åˆç‚¹ã•ã‚Œã¦ã—ã¾ã†ã€‚
ã—ã‹ã—ã€æ–‡æ„ã‚’èªã‚€ã¨ã€ã¯ã£ãり言ãˆã°ä»–æ„›ãªã„話ãªã®ã 。
例ãˆã°ã€åŒã˜å¹³å‡æ°—温摂æ°50度ã§ã‚‚ã€ä¾‹ã«æŒ™ã’られãŸ100度+0度ã§ã‚‚200度+マイナス100度ã§ã‚‚ã€75度+25度ã§ã‚‚åŠ ç®—å¹³å‡ã¯50度ã 。ã‘ã‚Œã©å¹¾ä½•å¹³å‡ã¯ãã‚Œãžã‚ŒãŒ46度ã€49度ã€ãƒžã‚¤ãƒŠã‚¹19度ã«ãªã‚Šã€ä¸€æ–¹ã¨ä»–æ–¹ã®æ°—温差ãŒå¤§ãã„ã»ã©å¹¾ä½•å¹³å‡ã¯ç®—è¡“å¹³å‡ã‚ˆã‚Šä½Žã„æ•°å—ãŒå‡ºã‚‹ã€‚å½¼ã¯åŠ ç®—å¹³å‡ã¨å¹¾ä½•å¹³å‡ã®å·®ãŒé¢¨ã‚„æµ·æµã®ã‚¨ãƒãƒ«ã‚®ãƒ¼ã¨ãªã‚‹ã¨è¨€ã£ã¦ã„ã‚‹ãŒã€ç°¡å˜ã«è¨€ãˆã°æ¸©åº¦å·®ãŒå¤§ãã„ã»ã©é¢¨ã‚‚æµ·æµã®å¼·ã•ãŒå¤§ãããªã‚‹ã¨ã„ã†å½“ãŸã‚Šå‰ã®è©±ã 。
ã“ã‚Œã ã‘é•ã†ã®ã ã‹ã‚‰å¤šå°‘åŠ ç®—å¹³å‡æ°—温ãŒä¸Šæ˜‡ã—ã¦ã‚‚幾何平å‡ã§ã¯é€†ã«ä¸‹ãŒã‚‹ã‚±ãƒ¼ã‚¹ã‚‚ã‚ã‚‹ã¨ã„ã†ã“ã¨ã 。
ã‘ã‚Œã©ã€ã“ã‚“ãªã®ã¯æœºä¸Šã®è©å¼ã‚‚ã„ã„所ã§ã€ã¾ãšåœ°çƒã®å¹³å‡æ°—温ã¯ç„¡æ•°ã®åœ°ç‚¹ã§è¨ˆæ¸¬ã•ã‚Œã¦ã„ã‚‹ã®ã§ã€2箇所ã ã‘計測ã—ãŸã ã‘ãªã‚‰ã¨ã‚‚ã‹ãã€ãã‚“ãªãƒã‚¤ã‚¢ã‚¹ã¾ãšå‡ºãªã„。算術平å‡æ°—温ãŒä¸Šæ˜‡ã™ã‚Œã°ã€å¹¾ä½•å¹³å‡ã‚‚上昇ã™ã‚‹ã®ã 。
ä»®ã«2箇所ã ã‘å–り上ã’ã¦110度ã¨ãƒžã‚¤ãƒŠã‚¹10度ã¯åŠ ç®—å¹³å‡ã§50度ã¨å¤‰ã‚らãªã„ãŒã®å¹¾ä½•å¹³å‡ã¯44度ã¨ä¾‹ã«æŒ™ã’られãŸ100度ã¨0度ã®å¹¾ä½•å¹³å‡ã‚ˆã‚Š2度低ããªã‚‹ã€‚ã—ã‹ã—ã€90度ã¨10度ãªã‚‰48度ã«ãªã£ã¦é€†ã«é«˜ããªã‚‹ã€‚
è¦ã™ã‚‹ã«ã€ã‚ãã¾ã§æ°—温差ãŒæ¿€ã—ã„ã¨å¹¾ä½•å¹³å‡ã¯ä½Žããªã‚‹ã¨ã„ã†ã ã‘ã®è©±ã 。
データãŒç„¡æ•°ã«ãªã‚Œã°ã€ã€Œä¸Šæ˜‡ãƒˆãƒ¬ãƒ³ãƒ‰ã€ãŒã€Œä¸‹é™ãƒˆãƒ¬ãƒ³ãƒ‰ã€ãªã‚‹ã‚ˆã†ãªãƒã‚¤ã‚¢ã‚¹ã¯ã¾ãšèµ·ããªã„ã ã‚ã†ã€‚ã—ã‹ã‚‚ã€ç¾å®Ÿã®åœ°çƒæ¸©æš–化ã¯å¯’冷地ã®æ¸©æš–化ãŒå¤§ããã€å…ƒã€…æš‘ã„熱帯地方ã¯ã•ã—ã¦ä¸ŠãŒã‚‰ãªã„ã®ã ã‹ã‚‰ã€å…¨ä½“çš„ã«æ°—温差ãŒå°ã•ããªã‚‹ã®ã§å¹¾ä½•å¹³å‡ã—ã¦ã‚‚åŠ ç®—å¹³å‡ã¨ã»ã¨ã‚“ã©å¤‰ã‚らãªããªããªã£ã¦ã„ã‚‹ã¯ãšã ã‹ã‚‰ã€ãã‚“ãªé€†è»¢ã¯èµ·ãよã†ãŒãªã„。
è¦ã™ã‚‹ã«ç†±åŠ›å¦çš„厳密性ãŒå•é¡Œã«ã•ã‚Œã¦ã„ã‚‹ãŒã€åŠ ç®—å¹³å‡ã§ã‚‚ç¾å®Ÿå•é¡Œã¨ã—ã¦ä½•ã‚‚å•é¡Œã¯ãªã„ã®ã 。
Clickã§æ•‘ãˆã‚‹blogãŒã‚る⇒