計量政治学と計量経済学の考え方の違い
経済セミナー2022年10・11月号 通巻728号【特集】いま、政治の問題を考えるを読んでいたら、計量政治学と計量経済学の考え方の違いの記事が面白かった。
以下はラフなメモ書き。
Pythonで微分積分や統計の基礎を理解しよう: プログラマの思索
経済学は信頼性革命や構造推定により大きく変貌している: プログラマの思索
経済学や心理学の実験で得られた理論は再現性があるのか?~内的妥当性と外的妥当性の問題点がある: プログラマの思索
Rによる計量経済学/計量政治学を読んでいる: プログラマの思索
【1】計量政治学と計量経済学の考え方の違い
政治学の方が特定地域のこだわりがある。
たとえば、NPO法人や政治家にインタビューするために、現地言語を習得したり、その国の文化に慣れる必要がある。
経済学はそこまでこだわらない。
一方、政治学は理論と計量をそこまで区別しない。
政治学は定性データを重視するし、時事問題を重視する。
たとえば、リーマン危機、ウクライナ戦争など。
しかし、経済学では、理論と計量を区別し、過去に蓄積してきた理論を使って、計量データを用いて、政策の効果を測定したりする。
だから、経済学では、理論の人は計量の論文を読め、計量の人は理論の論文を読め、と言われるらしい。
【2】計量政治学から得られた経験則
独裁者は暴力行使の利益とコストを勘案して多様な手法で大衆を制御しようとする。
ここに独裁者のジレンマがある。
権威主義的な国の選挙は実行がすごく難しい
選挙の不正がなければ、野党や反体制の人達がのさばり、自分たちの権力を脅かそうとする。
一方、選挙で不正を実施しすぎると、本当の支持率が分からないし、どこの地域が支持率が高く、どこの地域に反体制の人達が実は多いのか、分からない。
つまり、自発的な支持が得られないので、実は権力基盤が脆い事実を国民の皆が知っている。
だから、権威主義国の独裁者は実は裸の王様。
だから、独裁者は、自分の支持率はじつは高いのだ、というシグナルを国民に知らせる必要があり、あの手この手を使っている。
また、農業主体の国は人々が散在しており、組織化しにくい。
つまり、一体化して反抗しにくい傾向があるらしい。
すなわち、都市化した国の方が、民衆が組織化しやすく、一致団結しやすいので、民主化しやすい傾向があるらしい。
この話を読んで、フランス革命は実はパリ革命だった、という話を思い出した。
なぜなら、フランスは中央集権の王権国家であり、パリに人民も富も集中していたので、パリで体制変革されると全土にその余波が行き渡っていたから。
【3】民主化はいつどのように起きるのか?
色んな国の統計データを調査すると、与党と野党の間に、権力基盤の合意がある前提があるらしい。
つまり、信憑性のあるコミットメントが存在している。
だから、クーデターや内戦のような暴力行為による政権交代は必要なくなる。
たとえば、韓国や台湾、南アフリカなどがその事例に相当するだろう。
【4】計量政治学に機械学習や深層学習を用いて得られたノウハウ
権威主義国では統計データを不正に操作しているので信頼性が低い。
だが、夜間の光量データから経済活動の活発さを見る、という手法を取ることもできる。
その場合、衛星からの画像データをCNNに食わせて、計測アルゴリズムを作り出す、というやり方も取れる。
すると試行錯誤による発見的予測アルゴリズムの成果はどうだったのか?
4つある。
1つ目は、本来のアルゴリズムは藪の中。
真の因果関係を表すアルゴリズムは不明だった。
特に、深層学習の場合は、予測できたとしても説明可能性は低い。
正しいモデルアルゴリズムにこだわるのは不毛なことがある。
2つ目は万能なアルゴリズムは存在しないこと。
3つ目は、次元の恵みを活用せよ。
説明変数の次元が増えるほど、必要なデータ量は指数関数的に増えて計算できなくなる。
つまり、次元の呪いが発生する。
そこで、次元の呪いを解決するために、予測に必要な説明変数を絞り込む変数選択、過学習を防ぐ正則化などを用いる。
しかし、予測に使える変数は全て投入して、次元の恵みを最大限活用する方法もあるのでは、と。
4つ目は、予測可能性と説明可能性のジレンマがある。
深層学習は、予測性は高いが理屈は複雑で説明しにくい。
一方、線形回帰や決定木は、予測は微妙だが説明しやすく、因果関係を明確にしやすい。
そういうトレードオフがある。
つまり、政策介入の因果関係としての効果を測定することと、機械学習による予測は完全に調和しないのだ。
僕はこのトレードオフは、実際の政策を実行する上で、ハードルが高くなるリスクがあると思う。
たとえば、財政出動や補助金をばらまく政策を実行する時に、これだけの効果を予測できます、とアナウンスすることで、国民や利害関係者を納得させたいが、その効果の因果関係を説明できなければ、本当に効果があるのかと疑問に思う人も増えて、その制作に反対する人が増えてしまい、せっかく期待していた効果が実行しても得られないリスクが出てくるからだ。
経済学のルーカス批判のように、政治学でも自己予言的なリスクがあるのかもしれない。
| 固定リンク
« テスト管理ツールCAT、TestRail、QualityForwardのオンラインのマニュアルのリンク | トップページ | TwitterやFacebookは人力キュレーションツールとして使う »
「経済学・ERP・財務会計」カテゴリの記事
- ビジネス書の名著はどれ?(2023.09.18)
- 第85回IT勉強宴会の感想~概念データモデルからビジネスモデルを構築すべきという考え方(2023.05.13)
- 令和4年度春期試験のITストラテジスト試験第4問をastahでモデル化してみた(2023.04.15)
- 経営戦略とIT戦略をつなぐ鍵は何なのか(2023.01.04)
- 計量政治学と計量経済学の考え方の違い(2022.10.02)
「統計学・機械学習・深層学習」カテゴリの記事
- 統計学の考え方をastahでまとめた(2023.05.28)
- ランダム化比較試験はなぜ注目されて利用されるようになったのか(2023.04.08)
- ChatGPTで起きている事象の意味は何なのか(2023.04.02)
- 過学習に陥った人間や社会の事例は何があるのか(2023.01.09)
- 計量政治学と計量経済学の考え方の違い(2022.10.02)
コメント