HiveQLã§ã¯ã¹ãã¼ãã«é£ãæãã¦ãããããç§ãPrestoã使ãå§ãã¾ããã MySQLãHiveã§ä½¿ã£ã¦ããã¯ã¨ãªãç½®ãæããæã«ããã£ãTipsãã¾ã¨ãã¦ããã¾ãã AWS Athenaã§Prestoã使ã£ã¦ããæ¹ãå¢ãã¦ãã¨æãã®ã§ãPrestoæ¨æºé¢æ°ã§ã®è¨è¿°ä¾ãæ¡å ãã¦ããã¾ãã Prestoã¨ã¯ Prestoã¯ãªã³ã¡ã¢ãªã§åãåæ£SQLã¨ã³ã¸ã³ã§ããã®é²åã¯ç®ãè¦å¼µãç©ã§ãã çºè¡¨ãããå½æã¯è²ã ãªæç´ããã使ããã¨ãèºèºãã¦ãã¾ãããã2015å¹´é ããã¯ãã使ããªãçç±ã¯ãªããªãã¾ããã ã¢ãããã¯ã«ä½¿ããã¨ã¦ãé«éãªSQLã¨ã³ã¸ã³ã§ãã®ã§ããããåãã®Hiveã®ããã«å®è¡çµæãå¾ ã¤æéã¯ã»ã¨ãã©ããã¾ããã Hiveã§ãã¨1ã¤1ã¤ã®å®è¡ã«æéãæããã®ã§ãã¯ã¨ãªã«æ £ãã¦ããªãæ°åè ã«ã¯è¾ãç©ãããã¾ããã ãããPrestoã§ã¯ã¤ã³ã¿ã©ã¯ãã£ãã«å®è¡ã§ãã¾ãã®ã§ããã©ã¤
ããã«ã¡ã¯ã Kafkaã試ãã¦ããæä¸ã§å¾®å¦ã§ãããæè¿ä½¿ããã®ããªããã¨æ å ±ãéãã¦ããã®ããApache Sparkãã§ãã MapReduceã¨åããåæ£ä¸¦è¡å¦çãè¡ãåºç¤ãªã®ã§ãããMapReduceãããæ°ååéãã¨ãã®æ å ±ãããã¾ãã ã»ã»ã»ããªé¿åãªãã¨ãæã£ãã®ã§ãããå é¨ã§ä¿æãã¦ããRDDã¨ããä»çµã¿ãé¢ç½ããã¨ãããã ã¨ããããè³æãè«æãèªãã§ã¿ããã¨ã«ãã¾ããã ã¾ãè¦ã¦ã¿ãè³æã¯ãOverview of Sparkãï¼http://spark.incubator.apache.org/talks/overview.pdfï¼ã§ãã ã¨ããããã§ãèªãã çµæãã¾ã¨ãã¦ã¿ã¾ãã Sparkã¨ã¯ï¼ é«éã§ã¤ã³ã¿ã©ã¯ãã£ããªè¨èªçµ±åã¯ã©ã¹ã¿ã³ã³ãã¥ã¼ãã£ã³ã°åºç¤ Sparkããã¸ã§ã¯ãã®ã´ã¼ã«ã¯ï¼ 以ä¸ã®2ã¤ã®è§£æã¦ã¼ã¹ã±ã¼ã¹ã«ããé©åããããMapReduceãæ¡å¼µ
Hadoopæ¬2çãè²·ã£ããã®ä¸é±éå¾ã«Deals of the day ã§åé¡ã»ã¼ã«ãããã¦æ»ã«ãããªã£ãã®ã§è ¹ããã«æ¸ã ã¯ããã« ããã«æ¸ãã¦ããã®ã¯å ¨é¨åèãªã³ã¯ã»æç®ããã²ã£ã±ã£ã¦ããã ãã§ãã»ã¨ãã©å ¨é¨æ¤è¨¼ãã¦ãªããééããããã°ãªãã¹ãæ©ãã«æ´æ°ããããåªåã¯ããããéµåã¿ã«ãã¦ä½ãèµ·ãã¦ãèªå·±è²¬ä»»ã§ã Hive ã®ã¯ã¨ãªãã¥ã¼ãã³ã°ã«é¢ããã¡ã¢æ¸ãã§ããã以ä¸ã®ãã¨ã¯ãæ¸ãã¦ããªãã Hadoopèªä½ã®ãã¥ã¼ãã³ã° Hive ã®ã¯ã¨ãªãã¥ã¼ãã³ã°ä»¥å¤ã®è©± ä¾ãã°ãå§ç¸®ãã¡ã¤ã«ã Hive ä¸ã§æ±ãã«ã¯ã©ããããã¨ã JOIN ä¸çªå·¦ã®ãã¼ãã«ã«æã大ããªãã¼ãã«ãæã£ã¦ãã ä¸çªå·¦ã®ãã¼ãã«ãMRã§ããå ¥åãã¼ã¿ã¨ãã¦æµãããã¤ã³ãã¼ãã¼ãã«ã®ãã¼ã¿ã¯ã¡ã¢ãªã«ä¿æãããã åä¸ JOIN ãã¼ é常㯠1 JOIN = 1 MR ã¸ã§ãã ããåä¸ã® JOIN ãã¼ã使ã£ã¦ã
ãã¬ã¸ã£ã¼ãã¼ã¿ã¯ã¯ã©ã¦ãã§ãã¼ã¿ããã¼ã¸ã¡ã³ããµã¼ãã¹ãæä¾ãã¦ãã¾ãã Hadoop Conference Japan 2014 以åã«åç¥ããHadoop Conference Japan 2014ã§ï¼å¼ç¤¾Software Architectã®å¤æ©ãçºè¡¨ãã¾ããã ãã¼ãã¯ï¼Facebookãå ¬éããæ°ããåæ£å¦çåºç¤ï¼Prestoãå®ã¯Facebookãå½¼ãã®è¶ 大è¦æ¨¡ãªãã¼ã¿ã»ããã«å¯¾ãã¦ã¤ã³ã¿ã©ã¯ãã£ãã«çµæãè¿ããããã«ã¨éçºããããã®ã§ããéçºãå§ã¾ã£ã¦ã¾ã 2å¹´ãçµã£ã¦ããã¾ãããï¼ä»ã§ã¯ãã¬ã¸ã£ã¼ãã¼ã¿ãåãã¨ãã¦å¤ãã®ããã«ã¼éãã³ããã¿ã¼ã¨ãã¦åå ããæ´»çºçãªããã¸ã§ã¯ãã«æé·ãã¦ãã¾ãã Prestoã¯HiveãImpalaã¨åããSQL Query Engineãã§ããï¼ç¹ã«æ°ç¾GBãè¶ ãã大è¦æ¨¡ãã¼ã¿ã«å¯¾ãã¦ãã¤ã³ã¿ã©ã¯ãã£ããªã¬ã¹ãã³ã¹ãï¼ã³ã³ã0ç§ä»¥ä¸ï¼é ãã¦
Disclaimer: The opinions expressed here are my own and do not necessarily represent those of current or past employers.Twitter / Photos Disclaimer: The opinions expressed here are my own and do not necessarily represent those of current or past employers. Twitter / Photos Henry Robinsonã«ãããã«ã©ã ãã¹ãã¬ã¼ã¸ã®è§£èª¬è¨äºã翻訳ãã¾ãããã«ã©ã ãã¹ãã¬ã¼ã¸ã¯ãGoogleã§éçºããããã¼ã¿å¦çãã¼ã«ã§ããDremelã«ä½¿ç¨ããã¦ãããã¡ã¤ã«ãã©ã¼ãããã§ãããClouderaãéçºãé²ããImpalaã§ãæ¡ç¨
From Fluentd Meetupã«è¡ã£ã¦ãã¾ãã ãããèªãã æãBigQueryã®æ¤ç´¢ã¹ãã¼ãã«ã¤ãã¦ã¡ãã£ã¨è£è¶³ããããªã£ãã確ãã«Fluentd Meetupã®ãã¢ã§ã¯9å件ã7ç§ç¨åº¦ã§æ¤ç´¢ãã¦ããããBigQueryã®çã®å®åã¯ãããã1ã2ã±ã¿ä¸ã ããã ãã¡ãã£ã¨æå ã§å°ã大ããã®ãã¼ãã«ã§è©¦ãã¦ã¿ããã120åè¡ã®æ£è¦è¡¨ç¾ãããä»ãéè¨ã5ç§ã§å®äºãããè«ãã証æ ã§ããã¢ãããªï¼1å16ç§ï¼ãä½ã£ã¦ã¿ãï¼ From The Speed of Google BigQuery ããã¯éããããä½ãã®ã¤ã³ããã§ããï¼æåã«ãã¢ãè¦ãæããæã£ãï¼ãæ£è¦è¡¨ç¾ãããããå¤ãã¦ã¿ã¦ãã¹ãã¼ãã¯å¤ãããªããã¤ã¾ããã¤ã³ããã¯ã¹ãäºåæ§ç¯ã§ããªãã¯ã¨ãªã«å¯¾ãã¦ãã®ã¹ãã¼ããªã®ã§ããã ä¾¡æ ¼ãå®ãããããã«120åè¡ã®ã¯ã¨ãªã¯1åã§200åãããã£ã¦æ°è»½ã«å®è¡ã§ããªãããã§ãããã1.2å
å ãã¿ã¯ãã¡ã Join Optimization in Apache Hive Hiveã¯0.7ããjoinãæé©åããã¦ãã¾ããã©ã®ããã«æé©åãããã®ãä¸è¨ã®è³æãã²ãã¨ãã¦ã¿ã¾ãã ãã¾ã¾ã§ã®join ãã¾ã¾ã§ã®joinã¯ããããã½ã¼ããã¼ã¸ã¸ã§ã¤ã³ã§ãã mapãã§ã¼ãºã§ãã¼ãã«ã®ãã¼ã¿ãèªã¿è¾¼ãã§joinãã¼ãjoinããªã¥ã¼ãåºåããshuffleãã§ã¼ãºã§ã½ã¼ããreduceãã§ã¼ãºã§joinã¨ããæµãã§ãã ãã®å ´åshuffleãã§ã¼ãºã®ã½ã¼ãå¦çãããã«ããã¯ã¨ãªã£ã¦ãã¾ããã ããã§ç»å ´ããã®ãMap Joinã§ãã joinã®çæ¹ã®ãã¼ãã«ã®ãµã¤ãºãã¡ã¢ãªã«åã¾ãã»ã©å°ããã®ã§ããã°ãmapperã®ã¡ã¢ãªã«èªã¿è¾¼ãã§mapãã§ã¼ãºã ãã§joinãã¾ãã ãããªæãã®æ§æã§æ¸ãã¾ãã select /*+mapjoin(a)*/ * from src1 x join
ããã«ã¡ã¯ãä»åã®ããã°æ å½ é«æ©ã§ãã æ¬é¡ã¨ã¯é¸ãã¾ãããããã°ãã¼ã¿ã«é¢é£ãããã¬ã³ãã¨ãã¦ãM2M(Machine to Machine)ãIoT(Internet of Things)ã¨å¼ã°ããæè¡ãããã¾ãã SIOSããã°ãã¼ã¿ãã¼ã ã¨ãã¦ãããããã®æè¡ã«ãã£ã¦å¤§éã«åéããããã¼ã¿ã«ã¯æ³¨ç®ãã¦ãã¾ãã ãããã®æè¡ãå人ã§å®ç¾å¯è½ãªããã°ã©ããã«ããã¤ã¹ã¨ãã¦ãArduinoãRaspberry Piãæ®åãã¦ãã¦ãã¾ãã ç¹ã«ãArduinoã¯ãæ¥è§¦ã»ã³ãµã赤å¤ã»ã³ãµãªã©å種ã»ã³ãµãå®è£ ã§ãããªããã¤BluetoothãZigBeeãªã©ã®éä¿¡ã¢ã¸ã¥ã¼ã«ã®å®è£ ãå¯è½ã§ãã ä¾ãã°ãè¤æ°å°ã®Arduinoãçµã¿åããã¦èªå® å ã»ã³ãµãããã¯ã¼ã¯ãæ§ç¯ããæ¥å¸¸çæ´»ã®è¦ããåãã§ããã楽ãããã§ããã ããããããã°ãã¼ã¿ãçã¿åºãæ§ã ãªã¢ã¤ãã¢ãå®ç¾ããããã«ãç§ãã¡ãæ¥ã ãã
ãã®ã¨ã³ããªã¯ãã¶ãã«ç ½ãè¦ç´ ãå«ãã¦ãã¾ãããæå³çãªãã®ã§ããå㯠NoSQL ã¯ç´ æ´ãããã¨æãã¾ãã ãã¦ãNoSQL ãªãã¦è¨èã«è¸ãããã¦ã人ã¯ç½®ãã¨ãã¦ãæè¿ RDBMS 以å¤ã®ãã¼ã¿ã¹ãã¢ã¨ããã®ãè²ã ã§ã¦ãã¦ã¾ããä»æç¹ã§è¦æ¸¡ãéãã«ããã¦ã¯ãå®å®æ§ãèé害æ§ãããã©ã¼ãã³ã¹ãæ å ±éãéçºè ã®æ £ããå ¨ä½ã®ãã©ã³ã¹ã§è¨ãã° RDBMS ã«ããªããã®ã¯ãªãããã§ãããä»å¾ã©ããªã£ã¦ãããã¯ã¾ãåããã¾ããã ä¸æ¹ã§ãRDBMS ãã©ããã¦ãè¦æã¨ããåéã¨ããã®ã¯åå¨ãã¾ããä¾ãã° 1 ãµã¼ãã«åã¾ããããªãæ§ãªå¤§å®¹éãã¼ã¿ã«å¯¾ãããããå¦çããªã¢ã«ã¿ã¤ã ãªã©ã³ãã³ã°ãã¢ã¯ãã£ããã£ãªã©ã®ãã£ã¼ãæ å ±ãããã¦æ§é åããããã¼ã¿ã®åãæ±ããä½ã§ãããã§ã NoSQL ã«ç½®ãæããã°ãããªãã¦èãã¯ç¾æç¹ã§ã¯å°åºåãå ¥ããããã§ãããä¾ã¨ãã¦æããæ§ãªãã³ãã¤ã³ããªé¨åã§ã¯ããã«
We are excited to announce the acquisition of Octopai, a leading data lineage and catalog platform that provides data discovery and governance for enterprises to enhance their data-driven decision making. Clouderaâs mission since its inception has been to empower organizations to transform all their data to deliver trusted, valuable, and predictive insights. With AI and [â¦] Read blog post
The fight for Hadoop dominance is officially on. The unveiling of Yahooâs (s yhoo) Hadoop spinoff Hortonworks will undoubtedly be the talk of todayâs Hadoop Summit, but itâs not the only game in town. In fact, while Hortonworks is busy answering questions about its product strategy, Cloudera and MapR will demonstrate new versions of their distributions overflowing with bells and whistles. I wrote
第5åAmazon Redshiftã®ã¢ã¼ããã¯ã㣠ï½ã¹ã±ã¼ãªã³ã°ã¨ãªã¹ãã¢ã試ãã¦ã¿ãã å®®å´çï¼è¤å·å¹¸ä¸ 2013-06-10
Hadoop Advent Calendar 2013 4æ¥ç®ã®è¨äºã§ã tl;dr explainã¨job historyãèªã 1 reducerã¯æª data skewã¯æª åæ¸ã ã¿ããªå¤§å¥½ãSQLã§Hadoopä¸ã§ã®å¦çãå®è¡ã§ããHiveã«ã¯ã¿ãªããæ®æ®µãããä¸è©±ã«ãªã£ã¦ãããã¨ã§ããããã¡ãã£ã¨èª¿ã¹ç©ã§ã°ã°ã度ã«ç®ã«å ¥ãæãããããã¹ã³ããããèãã å¿ã«æ¸ 涼ãªé¢¨ãã¯ããã§ããã¾ãã ã§ããHiveã®ã¯ã¨ãªè¨èªã¯SQLã§ã¯ãªãHiveQLã§ãããå®è¡ã¨ã³ã¸ã³ãRDBã®ããã¨ã¯å ¨ãç°ãªãMapReduceã§ããSQLã®ã¤ããã§HiveQLãæ¸ãã¦ããã¨å°é·ãè¸ãã§ãã¾ããã¨ãã¾ãã«ããããã¾ããæ¬ã¨ã³ããªã§ã¯é¥ããã¡ãªHiveQLã®è½ã¨ãç©´ã2ã¤ç´¹ä»ãã¾ãã ä¾1 SELECT count(DISTINCT user_id) FROM access_log SQLã«æ £ããæ¹ã§ãã
ãã¼ãã£ã·ã§ã³ãå©ç¨ãã ä»åã¯å°ãåã£ããã¼ãã«ãå®ç¾©ããã¦ã¿ã¾ãããã éµä¾¿çªå·ãã¼ã¿ã¯æ¯ææ´æ°ãããã®ã§ããã¼ãã«æå®æã«ãã¼ã¸ã§ã³ãæå®ã§ããããã«ãã¾ãããã®ãããªå ´åãHiveã§ã¯ãã¼ãã£ã·ã§ã³ã使ãã¾ãã 以ä¸ã«éµä¾¿çªå·ãä¿åãããã¼ãã«ãzipããå®ç¾©ãã¾ãããæ¥ä»åDATEã®ãã¼ãã£ã·ã§ã³verãè¨å®ããããã«ãã¾ãã hive> CREATE TABLE zip (zip STRING, pref INT, city STRING, town STRING) > PARTITIONED BY (ver DATE) > ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' > LINES TERMINATED BY '\n'; OK Time taken: 0.128 seconds
This webpage was generated by the domain owner using Sedo Domain Parking. Disclaimer: Sedo maintains no relationship with third party advertisers. Reference to any specific service or trade mark is not controlled by Sedo nor does it constitute or imply its association, endorsement or recommendation.
In this tutorial I will describe how to write a simple MapReduce program for Hadoop in the Python programming language. Motivation What we want to do Prerequisites Python MapReduce Code Map step: mapper.py Reduce step: reducer.py Test your code (cat data | map | sort | reduce) Running the Python Code on Hadoop Download example input data Copy local example data to HDFS Run the MapReduce job Improv
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}