What do you get when you mix one part brilliant and one part daft? You get Pylearn2, a cutting edge neural networks library from Montreal thatâs rather hard to use. Here weâll show how to get through the daft part with your mental health relatively intact. Pylearn2 comes from the Lisa Lab in Montreal, led by Yoshua Bengio. Those are pretty smart guys and they concern themselves with deep learning.
Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics. For a brief introduction to the ideas behind the library, you can read the introductory notes or the paper. Visit the installation page to see how you can download the package and get started with it. You can browse the example gallery
注æ ãã®å 容ã¯ãã§ã«å¤ããªã£ã¦ãã¾ãã pipã®ä½¿ãæ¹ (2014/1ãã¼ã¸ã§ã³) ãåç §ãã¦ãã ããã pipã¨ã¯ãPythonã«ãããããã±ã¼ã¸ç®¡çã·ã¹ãã ã§ããeasy_installã¨ãããã¼ã«ãããã®ã§ãããpipã¯ãã®easy_installãç½®ãæãããã®ã¨ãã¦éçºããã¦ãã¾ããrubyã®gemãperlã®cpançãªä½ç½®ã¥ãã§ãã åãããã±ã¼ã¸ç®¡çãã¼ã«ã¨ãã¦setuptoolsç½®ãæãã®distributeã¨ãããã®ãããã®ã§ããããã¡ãã¯setuptoolså ¨ä½ãç½®ãæãããã®ã¨ãã¦éçºããã¦ãããpipã¯setuptoolsã®ä¸é¨ã§ããeasy_installãç½®ãæããå½¢ã§ãã ãªããç¾å¨ã®pipã®ãã¼ã¸ã§ã³ã¯0.8.2ã§ããã®ã¨ã³ããªã¯ãã®ãã¼ã¸ã§ã³ã使ã£ã¦ãã¾ãã ãªã«ãããããç¹ãããã°ããææãã ããã > èè ã®æ¹ã pipã®install ã¾ãã¯ea
Rã«ããå帰åæã®å®æ½æé ãç´¹ä» æ¬æ¥ã¯ãRã®ä½¿ãæ¹ã®å®è·µã¨ãã¦ããå帰åæãã«ã¤ãã¦ç´¹ä»ãã¦ããã¾ãããªããå帰åæã®çè«ã«ã¤ãã¦ã¯ããã¡ãã®ç¹éå ã®ãå¯ç¨¿ãå帰åæã¨ãã®å¿ç¨ãåç §ãã ããã ãâRâã§å®è·µããçµ±è¨åæï½å帰åæç·¨ãã¯ãå ¨ï¼åã§ã以ä¸ã®æ§æã§é²ãã¦ããã¾ãã å帰åæç·¨ã第1åï¼åå帰åæ å帰åæç·¨ã第2åï¼éå帰åæ å帰åæç·¨ã第3åï¼ãã¸ã¹ãã£ãã¯å帰åæ 第3åã®ä»åã¯ããã¸ã¹ãã£ãã¯å帰åæããå®è·µãã¦ããã¾ãã Rã®ãµã³ãã«ãã¼ã¿ã®å©ç¨æ¹æ³ ä»åã¯ãRã«ãããããç¨æããããµã³ãã«ãã¼ã¿ãå©ç¨ãããã¨æãã¾ããå帰åæã¨ãã®å¿ç¨â¢ãï½ãã¸ã¹ãã£ãã¯å帰åæã§ç´¹ä»ã®ãã£ãSpringfieldã®Baystateå»çã»ã³ã¿ã¼ã®189件ã®åºçã«ã¤ãã¦ã®ãä½ä½éåºçã¨ãã®ãªã¹ã¯å åã®é¢é£ãã調ã¹ããã¼ã¿ãå©ç¨ãã¾ããRã§æ¬¡ã®ã³ãã³ããå®è¡ãã¾ãã >library
2ï¼åé¡æ¨ é¢æ°rpartã§ã¯ãåå²ã®åºæºã¨ãã¦ã¯Giniä¿æ° Gini Index= ããã¯æ å ±éã¨ã³ãããã¼ Entrory= ãç¨ãããã¦ãããå¼ã®ä¸ã®ã¯ãã¼ãå ã®ã¯ã©ã¹ã®ãã¼ã¿ã§ããã ããã©ã«ãã§ã¯Giniä¿æ°ãè¨å®ããã¦ãããåå²åºæºã¨ã³ãããã¼ã®æå®ã¯ãå¼æ°split=âinformationâãç¨ããã (1)ã樹æ¨ã®ä½æ é¢æ°rpartãç¨ãã樹æ¨ã®ä½æã«ã¤ãã¦ä¾ãç¨ãã¦èª¬æãããããã§ãirisã®ãã¼ã¿ãç¨ãããã¨ã«ããã >library(mvpart)   #ãããã¯library(rpart)ã > iris.rp<-rpart(Species~.,data=iris) ä¸è¨ã®ã³ãã³ãã®å®è¡ã§ãããã©ã«ãã«è¨å®ãããæ¡ä»¶ã®ä¸ã§rpartã®åé¡æ¨ãä½æããããä½æããã樹æ¨ã®çµæã¯ã次ã®ããã«é¢æ°printã§è¿ããã¨ãã§ãããé¢æ°ã®printã«ç¨ããdigitã¯è¿
æããèªç§°ãããµã*1ã¬ãå¢ä»£è¡¨@motivic_æ°ããããªè¨äºãupãã¦ã¾ããã ã¨ãããã¨ã§ããããªã«ç°¡åã«Deep LearningãRä¸ã§è©¦ãããã ã£ããã¤ãã§ã«åããã£ã¦ã¿ããã¨æã£ãã®ã§ããããã ãåãirisã§ããã®ãè¸ããªãã®ã§*2ãããã¯ã¡ãã£ã¨å¤ãã¦ã¿ã¾ãããã¼ã¨ãããã¨ã§ã ãããããDeep Learningã®åçã«ã¤ãã¦ã¯@0kayuããã®ã¾ã¨ãããã¡ããã¡ãåèã«ãªãã¨æãã®ã§ãæ¯éæ¯éãåç §ãã ããã å®è£ ãã£ã¼ãã©ã¼ãã³ã° ä»åã¯ã¾ã åæ©ã®åæ©ãã触ãã¾ããããããã§ããã¥ã¼ãã³ã°ã®ã¨ãããªã©ã«ãã®ã¹ã©ã¤ãã«ãåºã¦ãããããªæ§ã ãªåççå´é¢ããããã£ã¦ãã¾ãã ããããH2Oã£ã¦ä½ã ã£ã 0xdata - H2O h2o/R at master · 0xdata/h2o · GitHub å ã H2Oã¯in-memoryãã©ãããã©ã¼ã ã¨ãã¦Hadoopä¸ãæ
Rsolnpã¨ããã©ã¤ãã©ãªã使ç¨ããã¨Rã§éç·å½¢å¶ç´æ¡ä»¶ä»éç·å½¢æé©åãè¡ããã¨ãã§ããã install.packages("Rsolnp",repos="http://cran.r-project.org/") ã§ã¤ã³ã¹ãã¼ã«å®äºã ï¼ãã¤ã®éã«ãCRANã«ç»é²ããã¦ããã®ã§ã¬ãã¸ããªãR-ForgeããCRANã¸å¤æ´ 2010/4/14ï¼ å ããå ¥ã£ã¦ãããµã³ãã«ã®ä¾é¡ã解ãã¦ã¿ãã library(Rsolnp) # POWELL Problem fn1=function(x) { exp(x[1]*x[2]*x[3]*x[4]*x[5]) } eqn1=function(x){ z1=x[1]*x[1]+x[2]*x[2]+x[3]*x[3]+x[4]*x[4]+x[5]*x[5] z2=x[2]*x[3]-5*x[4]*x[5] z3=x[1]*x[1]*x[1]+x[2]*
âå°å ¥ã®è¨äºã¯ãã¡ã http://d.hatena.ne.jp/teramonagi/20091217/1261048574 ç°¡åãªä¾é¡ãéãã¦åä½ã確ãããã¨ãã library(Rsolnp) #(x,y)=(1,2)ã§æå°å¤ãã¨ããããªå¸é¢æ° objectiveFunc <- function(x_) { return(sum((x_-c(1,2))^2)) } #決å®å¤æ°ã®ã¹ã¿ã¼ãå¤ x0 <- c(100,100) #æé©å solution <- solnp(x0,fun = objectiveFunc) #çµæåºå print(solution) ãããèµ°ãããã¨æå¾ã®printåãã > print(solution) $pars [1] 1 2 $convergence [1] 0 $values [1] 1.940500e+04 4.909325e-11 1.1498
D3The JavaScript library for bespoke data visualization Create custom dynamic visualizations with unparalleled flexibility
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}