HiveQLã§ã¯ã¹ãã¼ãã«é£ãæãã¦ãããããç§ãPrestoã使ãå§ãã¾ããã MySQLãHiveã§ä½¿ã£ã¦ããã¯ã¨ãªãç½®ãæããæã«ããã£ãTipsãã¾ã¨ãã¦ããã¾ãã AWS Athenaã§Prestoã使ã£ã¦ããæ¹ãå¢ãã¦ãã¨æãã®ã§ãPrestoæ¨æºé¢æ°ã§ã®è¨è¿°ä¾ãæ¡å ãã¦ããã¾ãã Prestoã¨ã¯ Prestoã¯ãªã³ã¡ã¢ãªã§åãåæ£SQLã¨ã³ã¸ã³ã§ããã®é²åã¯ç®ãè¦å¼µãç©ã§ãã çºè¡¨ãããå½æã¯è²ã ãªæç´ããã使ããã¨ãèºèºãã¦ãã¾ãããã2015å¹´é ããã¯ãã使ããªãçç±ã¯ãªããªãã¾ããã ã¢ãããã¯ã«ä½¿ããã¨ã¦ãé«éãªSQLã¨ã³ã¸ã³ã§ãã®ã§ããããåãã®Hiveã®ããã«å®è¡çµæãå¾ ã¤æéã¯ã»ã¨ãã©ããã¾ããã Hiveã§ãã¨1ã¤1ã¤ã®å®è¡ã«æéãæããã®ã§ãã¯ã¨ãªã«æ £ãã¦ããªãæ°åè ã«ã¯è¾ãç©ãããã¾ããã ãããPrestoã§ã¯ã¤ã³ã¿ã©ã¯ãã£ãã«å®è¡ã§ãã¾ãã®ã§ããã©ã¤
ã¹ãã³ãµã¼ãããªã³ã¯ ORACLE9iãããWITHå¥ããµãã¼ãããã¾ããã WITHå¥ã§æå®ããSQLã®çµæã¯ãVIEWã®æ§ã«SQLå é¨ããåç §ãããã¨ãã§ãã¾ãã ããã«ãããã¤ã³ã©ã³ã¤ã³ãã¥ã¼ãããå é¨çµåãå¤é¨çµåã使ã£ãè¤éãªï¼³ï¼±ï¼¬ãåãããããè¦ãããã¨ãåºæ¥ã¾ãã æ§æã¯ãWITHãã¼ã¯ã¼ãã®å¾ã«ãå¯ååãSQLçµæã®VIEWåã¨ãASãã¼ã¯ã¼ãã«ç¶ãã¦æ¬å¼§å ã«ï¼³ï¼±ï¼¬ãæå®ãã¾ãã 以ä¸ã®ä¾ã§ã¯ãå¯ååãçµæã®ãview01ãã¨è¡¨ãtable01ããå é¨çµåãã¦ãã¾ãã with view01 as ( select column99 from table99 where column01 = '01' ) select view01.column99, table01.column77 from table01, view01 where table01.column99
å¯æ³¢ã«åããï¼2024å¹´å¬æ¯åº¦ æ¥ã«å¬ã«ãªã£ããæ¯å¹´ã®ãã¨ã ãã©æ¥ãããã 令åã«ãªã£ããããããã9æ以éå£ç¯ã®å¤ããæ¹ãå¤ï¼å¤ï¼å¤ï¼å¤ï¼ããç§ï¼ããã¾ã å¤ï¼å¤ï¼ã¤ãã«ç§ï¼ç§ãâ¥ï¼ããã¾ã å¤ã ï¼ç§ï¼ããã¤ãã«ç§ã ï¼â¦ã¯ãç§çµããã¾ããå¬ã§ï½ï½ï½ï½ãï¼ã¿ãããªãããããæ¥ããããã ç§â¦
PostgreSQLã®åºæ¬ç(ãã使ã)ã³ãã³ãã§ãã [toc heading_levels="2"] ãã¼ã¿ãã¼ã¹ã®ä¸è¦§ãè¦ã ãã¼ã¿ãã¼ã¹ã®ä¸è¦§ãè¦ãæ¹æ³ã§ãã æ§æ \l 使ç¨ä¾ postgres=# \l List of databases Name | Owner | Encoding -----------+----------+---------- postgres | postgres | UTF8 sasuke | postgres | UTF8 sasuke2 | postgres | UTF8 template0 | postgres | UTF8 template1 | postgres | UTF8 test1 | postgres | UTF8 (6 rows) ãã¼ãã«ã®ä¸è¦§ ãã¼ãã«ã®ä¸è¦§ã®ç¢ºèªæ¹æ³ã§ãã æ§æ \d 使ç¨ä¾ postgres=# \d L
Redshiftã§è²ã ç°å¢æ§ç¯ã調æ»ãé²ãã¦è¡ãã¨ãå²ã¨ã¡ããã¡ããè¯ã使ãSQLçãåºã¦æ¥ã¾ããããã§ãã®ã¨ã³ããªã§ã¯ãæ®æ®µä½¿ã£ã¦ãã便å©ç³»SQLãé½åº¦ã¢ã¯ã»ã¹ãã¦ã¯ã³ãããã¦ä½¿ã£ã¦ããããªSQLãæ´ã«ã¯ãããã«ã¡ãã£ã¨ä¸æéå ããSQLçãéç´ãä¸è¦§ã¨ãã¦ã¿ãäºã«ãã¾ããã å¿ é ãªãã®ãã¾ããããã使ããããã¨ãããããªãã®ã«ã¤ãã¦ã¯é©å®è¿½å æ´æ°ãè¡ã£ã¦ãããã¨æã£ã¦ã¾ãã®ã§ããªã¹ã¹ã¡ã®SQLæãããã°æ¯éæãã¦é ããã¨å¹¸ãã§ãã ç®æ¬¡ S3ããã®COPYå¦çã¨ã©ã¼ã«é¢ãããã°ã確èªãã COPYå¦çæã«åºåãããã¨ã©ã¼ä»¶æ°éãå¶å¾¡ãã æå®ãã¼ãã«ã®ãã¼ãã«å®ç¾©ã確èªãã(type1:psqlã³ãã³ãã§ç°¡æ表示) æå®ãã¼ãã«ã®ãã¼ãã«å®ç¾©ã確èªãã(type2:distkey,sortkeyçã表示) æå®ãã¼ãã«ã®ãã¼ãã«å®ç¾©ã確èªãã(type3:ã³ã¡ã³ãæãä½µãã¦è¡¨ç¤º) ãã¼
SQLite ã®ç°å¢ã§ INTEGER PRIMARY KEY ã« AUTOINCREMENT ãåããã¦è¨å®ããå ´åã«ã©ã®ããã«èªåçã«å¤ãå²ãå½ã¦ãããããã«ãªãã®ãã«ã¤ãã¦è§£èª¬ãã¾ããã¾ãä»ã¾ã§ã«å²ãå½ã¦ããããã¨ã®ããæ大ã®å¤ã確èªããæ¹æ³ãåããã¦ãç´¹ä»ãã¾ãã AUTOINCREMENTãè¨å®ããå ´åã®å¤ã®å²ãå½ã¦ã«ã¼ã« ã«ã©ã ã«å¯¾ã㦠INTEGER PRIMARY KEY ãè¨å®ããå ´åããã¼ã¿ã追å ããæã« INTEGER PRIMARY KEY ãè¨å®ããã«ã©ã ã®å¤ãæå®ããªãã¨èªåçã«å¤ãæ ¼ç´ããã¾ããèªåçã«æ ¼ç´ãããå¤ã¯ã対象ã®ã«ã©ã ã«æ ¼ç´ããã¦ããæ大ã®å¤ã« 1 ãå ããå¤ã¨ãªãã¾ãããã®å¤ã¯ä»¥åã«å²ãå½ã¦ããããã¨ããããã©ããé¢ä¿ããªãããããã¼ã¿ã®è¿½å ã¨åé¤ãç¹°ãè¿ãã¦ããã¨ä»¥åã«æ ¼ç´ããããã¨ãããå¤ãå度ã«ã©ã ã«æ ¼ç´ãããå ´åãããã¾ãã ã«ã©ã ã« I
Schema-less Stream Processing with SQL Norikra is a open source server software provides "Stream Processing" with SQL, written in JRuby, runs on JVM, licensed under GPLv2. Schema-less event streams (called as 'target') Input/Output event streams as JSON objects, which can contain any fields with a target name. SQL processing Norikra's query is SQL with window specifier support (It's actually Esper
Hadoop Advent Calendar 2013 4æ¥ç®ã®è¨äºã§ã tl;dr explainã¨job historyãèªã 1 reducerã¯æª data skewã¯æª åæ¸ã ã¿ããªå¤§å¥½ãSQLã§Hadoopä¸ã§ã®å¦çãå®è¡ã§ããHiveã«ã¯ã¿ãªããæ®æ®µãããä¸è©±ã«ãªã£ã¦ãããã¨ã§ããããã¡ãã£ã¨èª¿ã¹ç©ã§ã°ã°ã度ã«ç®ã«å ¥ãæãããããã¹ã³ããããèãã å¿ã«æ¸ 涼ãªé¢¨ãã¯ããã§ããã¾ãã ã§ããHiveã®ã¯ã¨ãªè¨èªã¯SQLã§ã¯ãªãHiveQLã§ãããå®è¡ã¨ã³ã¸ã³ãRDBã®ããã¨ã¯å ¨ãç°ãªãMapReduceã§ããSQLã®ã¤ããã§HiveQLãæ¸ãã¦ããã¨å°é·ãè¸ãã§ãã¾ããã¨ãã¾ãã«ããããã¾ããæ¬ã¨ã³ããªã§ã¯é¥ããã¡ãªHiveQLã®è½ã¨ãç©´ã2ã¤ç´¹ä»ãã¾ãã ä¾1 SELECT count(DISTINCT user_id) FROM access_log SQLã«æ £ããæ¹ã§ãã
Apache Hive The Apache Hive ⢠is a distributed, fault-tolerant data warehouse system that enables analytics at a massive scale and facilitates reading, writing, and managing petabytes of data residing in distributed storage using SQL. Github Mail Docker Community Apache Hive is a distributed, fault-tolerant data warehouse system that enables analytics at a massive scale. Hive Metastore(HMS) provid
ç®æ¬¡ Hiveã¨ã¯ Hiveã®è¨å® HiveQLæ§æ(DDL) DataBase/SCHEMAã®ä½æ Database/SCHEMAã®åé¤ Tableã®ä½æ Tableã®åé¤ Tableåå¤æ´ Partitionä½æ Partitionã®åé¤ Columnã®å¤æ´ Columnã®è¿½å /ç½®ãæã Tableã®Propertyå¤æ´ SerDe Propertyã®è¿½å HiveQLæ§æ(SQL) ãã¼ãã«ä¸è¦§è¡¨ç¤º ãã¼ãã«ã®å 容ã表示 åºæ¬çãªSELECTæ WHEREå¥(æ¡ä»¶æå®) DISTINCT(éè¤åé¤) ORDER BY / SORT BYå¥(ã½ã¼ã) GROUP BYå¥(ã°ã«ã¼ãå) HAVINGå¥(ã°ã«ã¼ãåå¾ã®æ¡ä»¶) LIMITå¥ JOIN(ãã¼ãã«çµå) æ½åºã«ã©ã ãæ£è¦è¡¨ç¾ã§æå® UNION(çµæã®çµå) SUBQUERY LOAD(ãã¼ã¿ã®èªã¿è¾¼ã¿) Hiveã使ã äºåæºå
1. åãã« (æ¸ããã) SQLite 㯠RDMS (é¢ä¿ãã¼ã¿ãã¼ã¹ç®¡çã·ã¹ãã ) ã®ä¸ç¨®ã§ãã é常㮠RDMS ã¨ç°ãªãé¢åãªã»ããã¢ãããä¸è¦ã§ãç°¡åã«å©ç¨ãããã¨ãã§ãã¾ãã é常ã®ãã¡ã¤ã«ä¸¦ã«ç°¡åã«æ±ããã®ã§ã ä»ã¾ã§ã¯ããã¹ããã¡ã¤ã«ãªã©ã«ä¿åãã¦ãããã¼ã¿ã¯ sqlite ã«ä¿åããããã«ããã¨ä¾¿å©ã§ãã 2. Python ãã SQLite ã使ã ãã¡ãããPython ããã SQLite ãå©ç¨ã§ãã¾ãã Python 2.5 ãã sqlite3 ã build-in package ã¨ãã¦é å¸ããã¦ããã®ã§ã ããã«ä½¿ããã¨ãã§ãã¾ãã 次ã®ä¾ã®ããã«ããã¼ã¿ãã¡ã¤ã«ã« connect ããã ãã§ã使ããã¨ãã§ãã¾ãã ãã¼ã¿ãã¡ã¤ã«ã¯ã åå¨ããªããã°èªåçã«ä½æããã åå¨ããã°ããããéããã¾ãã ã¾ãããã¼ã¿ã®ä¿åã¯ãã¼ã¿ãã¼ã¹ãªãã¸ã§ã¯ãã® co
軽éã»é«éãªãã¼ã¿ãã¼ã¹SQLiteãPythonããæ±ãããã®ã©ã¤ãã©ãªã ã¤ã³ã¹ãã¼ã« Python2.5ããæ¨æºã©ã¤ãã©ãªã«å ¥ãã¾ããã ã¤ã³ã¹ãã¼ã«ä½æ¥ã¯ä¸è¦ã§ãã 使ç¨æ¹æ³ sqlite3ãã¤ã³ãã¼ããã #!python2.6 # -*- coding: utf-8 -*- import sqlite3 ãã¼ã¿ãã¼ã¹ãä½æãã con = sqlite3.connect("data.db") ãã¡ã¤ã«ããã§ã«åå¨ããã¨ãã¯ãã¡ã¤ã«ãéãã ãã¡ã¤ã«ããªãã¨ãã¯æ°ãããã¼ã¿ãã¼ã¹ãä½æããã isolation_levelã«Noneãæå®ããã¨ãèªåã³ãããã¢ã¼ãã«ãªãã¾ãã con = sqlite3.connect('temp.db', isolation_level=None) ç¹å¥ãªååã§ãã ":memory:" ã使ãã¨RAMä¸ã«ãã¼ã¿ãã¼ã¹ãä½ããã¨ãã§ãã¾ãã c
ãã¼ã¿ãã¼ã¹ã® SQLite ã®ä½¿ãæ¹ã«ã¤ãã¦è§£èª¬ãã¾ãã SQLite ã¯ãµã¼ãã¨ãã¦åä½ãããã®ã§ã¯ãªãåç¬ã®ã¢ããªã±ã¼ã·ã§ã³ã¨ãã¦åä½ããããã¨ãå¯è½ã§ããã¤ã³ã¹ãã¼ã«ãç°¡åãªä¸ã«é常ã«ã³ã³ãã¯ããªãããã¢ããªã±ã¼ã·ã§ã³ã¨ä¸ç·ã«é å¸ããã¨ãã£ãå©ç¨ãæ°å¤ãããã¦ãã¾ããããã§ã¯ SQLite ã使ã£ã¦ãã¼ã¿ãã¼ã¹ããã¼ãã«ã®ä½ææ¹æ³ãããã¦ãã¼ã¿ã追å ãããåå¾ãããããæ¹æ³ã«ã¤ãã¦ä¸ã¤ä¸ã¤è§£èª¬ãã¦ããã¾ãã
1. Datatypes In SQLite Most SQL database engines (every SQL database engine other than SQLite, as far as we know) uses static, rigid typing. With static typing, the datatype of a value is determined by its container - the particular column in which the value is stored. SQLite uses a more general dynamic type system. In SQLite, the datatype of a value is associated with the value itself, not with i
Mouseover dictionaryã®è¾æ¸ç»é²ãPythonãç¨ãã¦ç´æ¥è¡ã£ã¦ã¿ã¾ãããæµãã¨ãã¦ã¯CSVãã¡ã¤ã«ï¼PDICï¼ãèªã¿è¾¼ãã§SQLiteã®DBãä½æããFirefoxã®ãã©ã«ãã«æ¾ãè¾¼ãã ã ãã§ããrubyã§ãã£ã¦ããããæ¹ãããã®ã§çä¼¼ãã¦pythonã®åå¼·ãã¦ããã£ã¦ã¿ã¾ããã PDICã§CSVå½¢å¼ã®è¾æ¸ãã¡ã¤ã«ãä½æ ã¨ã³ã³ã¼ããUTF-8ã«å¤æ ä¸è¨ã®ããã°ã©ã ã§SQLiteã®DBãä½æ /.mozilla/firefox/default.*/ã«åºæ¥ãmoseoverdictionary.sqliteãå ¥ããã ãããªæµãã§é©ç¨ãã¾ãããPDICã使ã£ã¦ãã¾ã£ã¦ããã®ã§éªéãããã ãã®ãããªæ°ããã¾ããã趣å³ãªã®ã§ä»æ¹ããã¾ããã #!/usr/bin/env python #-*- coding:utf-8 -*- import sqlite3 import c
ãã¼ã¿ãã¼ã¹ãã¾ããã¨ã¡ã¤ã³ã¡ã¢ãªä¸ã§å¦çãããã¨ã«ãããå¾æ¥ã®ãã¼ããã£ã¹ã¯ãã¼ã¹ã®ãªã¬ã¼ã·ã§ãã«ãã¼ã¿ãã¼ã¹ãããåçãªé«éåãå®ç¾ããã¤ã³ã¡ã¢ãªãã¼ã¿ãã¼ã¹ã§ããMemSQLã®ææ°çãMemSQL 2.0ããå ¬éããã¾ããã MemSQL 2.0ã¯ã¤ã³ã¡ã¢ãªã®ã¹ãã¼ãã¨SQLã§ã®åãåãããã¹ã±ã¼ã«ã¢ã¦ãæ©è½ãããã¦ã¨ã³ã¿ã¼ãã©ã¤ãºå¯¾å¿ã®å¯ç¨æ§ãªã©ã4ã¤ã®ç¹å¾´ãæã¤ã¨èª¬æããã¦ãã¾ãã In-memory architecture Ad hoc SQL-based analytics Horizontal scale-out on commodity hardware Enterprise-grade durability and high availability ã¹ã±ã¼ã«ã¢ã¦ãã§ãã¼ã¿ã¦ã§ã¢ãã¦ã¹ã«å¯¾å¿ MemSQL 2.0ã¯ã¤ã³ã¡ã¢ãªãã¼ã¿ãã¼ã¹ã®ç¹å¾´ã§ããé«éãªå¦çã«å ãã¦ã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}