You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
L1 / L2æ£ååã¨è¨ãã°æ©æ¢°å¦ç¿ã¾ããã§ã¯å¸¸èã§ãã©ããªæ¬ãè¦ã¦ããã®æ°å¼ã«ãã表ç¾ãããã¯å¿ ãè¼ã£ã¦ã*1ããã§ãããããè¨ãã°ãã¾ãå®åã§ã¯çé¢ç®ã«L1 / L2æ£ååå ¥ãã¦ãªããªã¨æã£ãã®ã¨ãRã§ãããªãæ®éã©ããããã ããï¼ã¨æã£ãã®ã§*2ããã¯ãå¨åé ãã¿ãããªæãã§ã¯ããã¾ããåå¿é²çã«å®è·µãã¦ã¿ãããã¨æãã¾ãã L1 / L2æ£ååã£ã¦ä½ã ã£ã ã¨ãããã¨ã§å¾©ç¿ï¼èªåã®è¨æ¶ãåã£ã¦ãããã©ããã®ç¢ºèªï¼ãããPRMLã«ãè¼ã£ã¦ãæåãªå³ãããã¾ãããããã®èª¬æãç´æçã«ã¯æãåããããããã¨æãã¾ããããã¯éã¿ä»ããã¯ãã«ã2次å ã®å ´åãã¤ã¾ãã¨ãæ±ããã¨ããåé¡ãæ³å®ããå³ã§ããããã¡ãã£ã¨è¨ãã°2次å ãã¼ã¿ã«å¯¾ããåé¡orå帰åé¡ã¨ãããã¨ã§ã åºæ¬çã«ã¯åé¡å¨ã«ããå帰ã¢ãã«ã«ãããå¦ç¿ãã¼ã¿ã«å¯¾ãã誤差*3ãå®å¼åãã¦ããããæå°åããããã«ï¼ãã®ã±ã¼ã¹ã§ã¯2ã¤ã®
æ¦è¦ 深層å¦ç¿ãã¬ã¼ã ã¯ã¼ã¯Caffeã使ã£ã¦ï¼Deep Q-Networkã¨ãã深層強åå¦ç¿ã¢ã«ã´ãªãºã ãC++ã§å®è£ ãã¦ï¼Atari 2600ã®ã²ã¼ã ããã¬ã¤ããã¦ã¿ã¾ããï¼ Deep Q-Network Deep Q-Networkï¼ä»¥ä¸DQNï¼ã¯ï¼2013å¹´ã®NIPSã®Deep Learning Workshopã®"Playing Atari with Deep Reinforcement Learning"ã¨ããè«æã§ææ¡ãããã¢ã«ã´ãªãºã ã§ï¼è¡å価å¤é¢æ°Q(s,a)ã深層ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã«ããè¿ä¼¼ããã¨ããï¼è¿å¹´ã®æ·±å±¤å¦ç¿ã®ç 究ææãå¼·åå¦ç¿ã«æ´»ããããã®ã§ãï¼Atari 2600ã®ã²ã¼ã ã«é©ç¨ããï¼æ¢åææ³ãå§åããã¨ã¨ãã«ä¸é¨ã®ã²ã¼ã ã§ã¯äººéã®ã¨ãã¹ãã¼ããä¸åãã¹ã³ã¢ãéæãã¦ãã¾ãï¼è«æã®èè ãã¯ä»å¹´Googleã«è²·åãããDeepMindã®ç 究è ã§ãï¼ NIPS
ããã¤ãåå¼·ããããã¨äººå·¥ç¥è½ï¼æ©æ¢°å¦ç¿ï¼ãã£ã¼ãã©ã¼ãã³ã°ï¼Deep Learningï¼ã¨ãã£ããããã¯ã®è¨äºã®è¦ã¤ãã¦ã¯ã¢ã¼ã«ã¤ããã¦ãããã®ã®ãçµå±2015å¹´ã¯ä½ä¸ã¤ãããã«çµãã£ã¦ãã¾ã£ãã®ã§ãã¨ã«ããä¸æ©ã§ã足ãè¸ã¿åºãã¹ããæ¬è³ªçãªç解çã¯ãã¦ãããã¨ã«ãã試ãã¦ã¿ãã¨ãããã¨ããã£ã¦ã¿ã¾ããã 試ããã®ã¯ãTensorFlowãChainerãCaffe ã¨ãã£ãæ©æ¢°å¦ç¿ããã³ãã£ã¼ãã©ã¼ãã³ã°ã®ä»£è¡¨çãªã©ã¤ãã©ãªï¼ãã¬ã¼ã ã¯ã¼ã¯3種ã¨ã2015å¹´ã«è©±é¡ã«ãªã£ããã£ã¼ãã©ã¼ãã³ã°ãå©ç¨ããã¢ããªã±ã¼ã·ã§ã³2種ï¼DeepDreamãchainer-goghï¼ã ï¼DeepDreamã§è©¦ããçµæç»åï¼ ã¿ã¤ãã«ã«åæ¥ã¨æ¸ãã¾ãããããã¨ãã°TensorFlowã¯ç°å¢æ§ç¯ã ããªã10åãããã°çµããã§ãããããChainerãªãã¦ã³ãã³ãä¸çºãªã®ã§5ç§ãããã§ããCaffeã¯åã¯ã
Googleã¯æ©æ¢°å¦ç¿ã®ã©ã¤ãã©ãªTensorFlowããªã¼ãã³ã½ã¼ã¹ã¨ãã¦å ¬éããããã§ã«Googleã®åçæ¤ç´¢ãé³å£°èªèæè¡ã«ä½¿ç¨ããã¦ãããã®ã§ã大ããªæ³¨ç®ãéãã¦ãããAmazonãFacebookãæ©æ¢°å¦ç¿ã·ã¹ãã ããªã¼ãã³ã½ã¼ã¹ã¨ãã¦å ¬éãã¦ããã ãªã¼ãã³ã½ã¼ã¹ã®ã©ã¤ã»ã³ã¹ã¯ãApache 2.0ã ãç°¡åã«ããã¨ä½¿ã£ã¦ãããã¨ãæè¨ãããã¦ããã°åç¨ã§ãå©ç¨å¯è½ã§ããã ä»å¾ãæ§ã ãªãµã¼ãã¹ãç 究æ©é¢çã§æ©æ¢°å¦ç¿ã使ããã¦ãããã¨ãå¢ããã¨äºæ³ããããæ©æ¢°å¦ç¿ãAIã¯åºç¤æè¡ã¨ãã¦ãã¹ã¦ã®ç£æ¥ã«å½±é¿ãåã¼ããã¨ãããä»å¾è¦éããªãåãã§ããã åèï¼ äººå·¥ç¥è½ (AI) ã¯ã©ãã¾ã§é²æ©ãã¦ããã®ã â 4ã¤ã®ç¥è½ã¬ãã«ã¨å®ååä¾ â人工ç¥è½ (AI) ãã§ãã3ã¤ã®ã㨠â æ¶ããè·æ¥ã¨çã¾ããè·æ¥ âTensorFlowã®ã¤ã³ã¹ãã¼ã«ä»åã¯ãæ©æ¢°å¦ç¿ã«é¦´æã¿ããªã人ãã¾ãT
Autogradã¨ããééãä¹ãè¾¼ãã§ãã¾ãããã¯ããããããããããªããè¤éãªç¢ºçã¢ãã«ãæ失é¢æ°ã ã¨ãã¦ãããã©ã¡ã¼ã¿ã«é¢ããå¾é ãããã§ããã¨ãããããç°¡åã«è¨ç®ã§ãã¡ããã®ã§ãæ©æ¢°å¦ç¿ã®ä¸çã«å¤§ããªå½±é¿ãä¸ãããã§ããç¾æç¹ã§ã¯ãPythonã¨Torchã§ã®å®è£ ãå ¬éããã¦ããããã§ãããããããJuliaãªã©ä»ã®è¨èªã§ãå®è£ ããã¦ããããã§ããã ï¼è£è¶³ï¼ãã®è¨äºãæ¸ããããå¾ã«GoogleãTensorFlowãªããã®ãåºãã¦ãã¾ãã¦ããã¡ãã§ãèªåå¾®åããã£ããå®è£ ããã¦ãã¿ããã§ãããæ©æ¢°å¦ç¿é¢é£ã®ãã¬ã¼ã ã¯ã¼ã¯ã¯ç§»ãå¤ãããæ¿ããã§ããã¼ ^^; ï¼ ã¡ãªã¿ã«å§ã¾ãã¯ãããªæãã§ããã ãããã§ããã ã¨ãããããã¥ã¼ããªã¢ã«ãããªãããPythonçãã¥ã¼ããªã¢ã«ã®ååé¨åã«ãããã¼ãªæ¥æ¬èªè¨³ãã¤ããã®ã§ãããã§ã·ã§ã¢ãã¦ããã¾ããè±èªãèªããæ¹ã¯ãåã®ãã³ãã³ãªæ¥æ¬èª
é ããã«ã³ãã¢ãã«ã®ä¾ããã®ï¼ Pythonã§é ããã«ã³ãã¢ãã«ã®Filteringã®ä¾ Pythonã§é ããã«ã³ãã¢ãã«ã®Smoothingã®ä¾ é ããã«ã³ãã¢ãã«ã¨ã¯ãã·ã¹ãã ããã©ã¡ã¼ã¿ã®ããããªããã«ã³ãæ§ãæã¤ã¨ãã確çã¢ãã«ã§ãããã«ã³ãæ§ã¨ã¯ãã®éç¨ã®å°æ¥ç¶æ ã®æ¡ä»¶ä»ã確çåå¸ããç¾å¨ã®ç¶æ ã®ã¿ã«ãã決ã¾ããéå»ã®ã©ããªç¶æ ã«ããããªãã¨ããç¹æ§ã®ãã¨ã§ããããã§ã¯ãã®ã¢ãã«ã®ä¾ãè¨ãã¾ãã ããåéãé ãã«ä½ãã§ãã¦ãæ¯æ¥ä½ãããããããªãã«é»è©±ã§è©±ãã¾ããåéã¯ãæ£æ©ããè²·ç©ããæé¤ãã®3ã¤ã®ãã¨ã«ããé¢å¿ãããã¾ãããåéãä½ããããã¯ãã£ã±ããã®æ¥ã®å¤©æ°ã§æ±ºãã¾ããããªãã¯åéãä½ãã§ããã¨ããã®å¤©æ°ã®æ確ãªæ å ±ã¯æã£ã¦ãã¾ãããã§ããã©ããªå¾åããããã¯ç¥ã£ã¦ãã¾ããåéãæ¥ã é»è©±ã§è©±ãåºæ¥äºã«åºã¥ãã¦ãåéãä½ãã§ããã¨ããã®å¤©æ°ãæ¨å®ãã¦ã¿ã¾ãããã 天æ°ã¯é¢æ£
(訳注ï¼2016/1/5ãããã ãã翻訳ãã£ã¼ãããã¯ãå ã«è¨äºãä¿®æ£ãããã¾ããã) ãããã主観çã§ççãªæè¦ãé¡åã«ä»ããã¯ãªãã¯ãã¤ãï¼ã¯ãªãã¯èªå°ï¼è¨äºã ããã¨æãããæ¹ããã®ã¨ããã§ãã以åæå°ãã¦ãããææããæãã£ãããæ´å¯/å¦ä¸è¡ã¯ãäºç´°ã§ãããªããç§ã®äººçãå¤ãããã³ãã©ã¨ãªã£ãã®ã§ãããç§ããã®è¨äºãæ¸ããã®ã¯ããã«ãããã®ã§ãããåãã¿ã¹ã¯ã3å以ä¸ç¹°ãè¿ãå¿ è¦ããããªããã¹ã¯ãªãããæ¸ãã¦èªååããã ããããããã®ããã°ã¯ãªãã ããã¨æãå§ãã¦ããã®ã§ã¯ãªãã§ãããããåå¹´æ¯ãã«è¨äºãæ¸ããã®ã§ãããããã¤ãã¿ã¼ã§æ¸ãã Musings on social network platformsï¼ã½ã¼ã·ã£ã«ã»ãããã¯ã¼ã¯ãã©ãããã©ã¼ã ã«ã¤ãã¦ãã£ããèããï¼ ã¯ãã¦ããããã®åå¹´ã®éæ¸ãç©ããã¦ããªãã¨ããã®ã¯ããã§ããæ£ç¢ºã«ã¯ã400ãã¼ã¸ã® æ¬ ãæ¸ãã¾ããã
ä»ãæ¯æ¥ã®ããã«äººå·¥ç¥è½ã«é¢ãããã¥ã¼ã¹ãé£ã³è¾¼ãã§ãã¾ããããã®ä¸ã§ãç¹ã«æ³¨ç®ãéãã¦ããã®ãâãã£ã¼ãã©ã¼ãã³ã°âã§ãã ç 究éçºãé²ããä¼æ¥ã¨ãã¦æãæåãªä¾ã¯Googleã§ãããããæè¿ãGoogleããã£ã¼ãã©ã¼ãã³ã°ã«ããç»åèªèãä½é¨ã§ããWebã¤ã³ã¿ãã§ã¼ã¹ãå ¬éãã話é¡ãéãã¾ãããï¼åç §ãªã³ã¯ï¼ ã§ã¯ããã£ã¼ãã©ã¼ãã³ã°ã¨ã¯ä¸ä½ä½ãªã®ã§ãããããæ¬ç¨¿ã§ã¯ãã®ãã£ã¼ãã©ã¼ãã³ã°ã«ã¤ãã¦ããã®ã¤ã¡ã¼ã¸ãã¤ãããã¨ã«éç¹ãç½®ãã¦èª¬æãã¦ããããã¨æãã¾ãã 人éã®ç¥çµæ§é ã模ãããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®çºå±ç ãã£ã¼ãã©ã¼ãã³ã°ã®èãã®ãã¨ã¨ãªã£ã¦ãããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¯ã人éã®è³ç¥çµåè·¯ãçä¼¼ãããã¨ã«ãã£ã¦ãã¼ã¿ãåé¡ãããã¨ããã¢ã¤ãã¢ã«åºã¥ãã¢ã«ã´ãªãºã ã§ãã 人éã®è³ã¯ãã¥ã¼ãã³ï¼ç¥çµç´°èï¼ã®ãããã¯ã¼ã¯ã§æ§æããã¦ãã¦ããããã¥ã¼ãã³ã¯ã»ãã®ãã¥ã¼ãã³ã¨ã¤ãªã
A bare bones neural network implementation to describe the inner workings of backpropagation. Posted by iamtrask on July 12, 2015 Summary: I learn best with toy code that I can play with. This tutorial teaches backpropagation via a very simple toy example, a short python implementation. Edit: Some folks have asked about a followup article, and I'm planning to write one. I'll tweet it out when it's
å®è·µ æ©æ¢°å¦ç¿ã·ã¹ãã ã®7ç« ã¨8ç« ãããããããã¨ã«è¿ãã£ãã®ã§ãã¶ã¯ã¶ã¯ã£ã¨ã¾ã¨ãã¾ãããï¼æ°å¼ã¨ã³ã¼ãã«ã¯ä¸å触ãããæ¦è¦ã ãï¼ ã¢ã½ã·ã¨ã¼ã·ã§ã³ã»ã«ã¼ã«ã»ãã¤ãã³ã°ããã¬ã¤ã«ã¾ã¨ã¾ã£ãè³æããã£ãã®ã§æ¸ãã¾ããã§ãããï¼ä¸çªä¸ã®åèã®ã¨ããï¼ ã¢ã³ãµã³ãã«å¦ç¿ï¼Ensemble learningï¼ åã ã«å¦ç¿ããè¤æ°ã®å¦ç¿å¨ãèåããã¦æ±åè½åï¼æªå¦ç¿ãã¼ã¿ã«å¯¾ããäºæ¸¬è½åï¼ãåä¸ãããä¸ã¤ã®å¦ç¿å¨ãä½æãããã¨ãã¢ã³ãµã³ãã«å¦ç¿ã¨å¼ã°ãã¾ãã ç¹å¾´ã¨ãã¦ãåå¦ç¿å¨ãæ°ããç¹å¾´éã¨ãã¦èãããã¨ãã§ããè¨ç·´ãã¼ã¿ãåºã«ãã®æ°ããçµã¿åããæ¹ãå¦ç¿ããã 諺ã®ï¼äººå¯ãã°ææ®ã®ç¥æµãªæãã§ããå¦ç¿å¨ã®åæ°ãå¢å ãããã¨ã«ããèå¥è½åãåä¸ãã¦è¡ããã¢ã³ãµã³ãã«å¦ç¿ã¯ãé«ãèå¥è½åã«å ãåç´æ§ï¼å¦ç¿å¨ãè¤æ°åç¨æããã ãï¼ã¨ æ±ç¨æ§ï¼ä»»æã®å¦ç¿å¨ã«é©ç¨å¯è½ï¼ã¨ããå©ç¹ãããã ãã®ããã«ã¯
ä»è©±é¡ã®Deep Learning(深層å¦ç¿)ãã¬ã¼ã ã¯ã¼ã¯ãChainerã«ææ¸ãæåã®å¤å¥ãè¡ããµã³ãã«ã³ã¼ããããã¾ãããã¡ãã使ã£ã¦å 容ãå°ã解説ããè¨äºãæ¸ãã¦ã¿ããã¨æãã¾ãã (æ¬è¨äºã®ã³ã¼ãã®å ¨æãGitHubã«ã¢ãããã¾ããã[PCæ¨å¥¨]) ã¨ã«ãããã¤ã³ã¹ãã¼ã«ããããç°¡åãã¤ãPythonãæ¸ããã°ããã«ä½¿ããã¨ãã§ãã¦ããããã§ãï¼ Pythonã«éãã¦ã³ã¼ããæ¸ããã®ããããããã§ãããã ãããªæãã®ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¢ãã«ã試ãã¦ã¿ããã¨ããè¨äºã§ãã 主è¦ãªæ å ±ã¯ãã¡ãã«ããã¾ãã Chainerã®ã¡ã¤ã³ãµã¤ã Chainerã®GitHubãªãã¸ã㪠Chainerã®ãã¥ã¼ããªã¢ã«ã¨ãªãã¡ã¬ã³ã¹ #1. ã¤ã³ã¹ãã¼ã«# ã¾ãã¯ä½ã¯ã¨ãããã¤ã³ã¹ãã¼ã«ã§ããChainerã®GitHubã«è¨è¼ã®"Requirements" ( https://github.
æ©æ¢°å¦ç¿ã®ãã¼ã¿ã¨ãã¦ç¹å¾´éãä½ãã¨ãã®æ³¨æç¹ãæ©ããã¨ãªã©ãã¡ã¢ã£ã¦ããã¾ããã ééããªã©ãå«ã¾ãã¦ããããããã¾ããã åºæ¬çãªå 容ã§ãã®ã§èª¿ã¹ãã°ãã£ã¨é©åãªããæ¹ãããã¨æãã¾ãã ã«ãã´ãªã«ã«ã»ãã¼ã¿ ã«ãã´ãªã«ã«ã»ãã¼ã¿ã¨ããã®ã¯ãããã¤ãã®éããã種é¡ã®å¤ãã¨ãããã®å¤§å°é¢ä¿ã«æå³ãç¡ããã®ã§ãã 質çãã¼ã¿ã¨ãå義尺度ã¨ãå¼ã°ãããã¨ãããã¾ãã ä¾ãã°é½éåºçã®ãã¼ã¿ãèããæã«ãåæµ·éã¨æ²ç¸ã¯éãå¤ã§ããããã®å¤§å°é¢ä¿ã¯å®ç¾©ã§ãã¾ããã (ãã¡ããåæµ·éã¨æ²ç¸ã«é¢ç©çãªå¤§å°é¢ä¿ãªã©ã¯ããã¾ããã欲ããæ å ±ã§ã¯ãªãã¨ãã¾ã) ã«ãã´ãªã«ã«ã»ãã¼ã¿ãç¹å¾´éã«ããã¨ãã«ã¯ã«ãã´ãªã¼ãã¨ã«ãã®ç¹å¾´ã§ãããã©ããã®äºå¤ã«ããã¨ããã¨è¨ããã¦ãã¾ã 以ä¸ã«ä¾ã示ãã¾ããããããã®åããã¼ã¿ãã¨ã®ç¹å¾´éã表ãã¦ããã¨èãã¦ãã ãã åæµ·é:1 æ²ç¸:0 æ±äº¬:0 åæµ·é:0 æ²ç¸:
Pylearn2ã使ã£ã¦ææ¸ãæåèªèãè¡ãã¾ãã Pylearn2ã®ã¤ã³ã¹ãã¼ã«æ¹æ³ã«ã¤ãã¦ã¯å²æãã¾ãã ç»åã®è¡¨ç¤ºãè¡ãããã«ç°å¢å¤æ° PYLEARN2_VIEWER_COMMAND ã®è¨å®ããã¦ããã¦ãã ããã ä»å使ã£ãã½ã¼ã¹ã³ã¼ãã¯Githubã«ã¢ãããã¼ããã¦ããã¾ãã https://github.com/dsanno/pylearn2_mnist ãã¼ã¿ããã¦ã³ãã¼ããã ãã¼ã¿ã¯MNIST databaseã使ãã¾ãã 以ä¸ã®ãã¼ã¿ã»ããã¨ãªã£ã¦ãã¾ãã 1åã®ãã¼ã¿ã¯28 x 28 ãã¯ã»ã«ã®ç½é»ç»åã§ã0ãã9ã¾ã§ã®æ°åã®ãã¡1ã¤ãæããã¦ãã å¦ç¿ç¨ãã¼ã¿60000å ãã¹ããã¼ã¿10000å pylearn2ã«ã¯ãããã¤ãã®ãã¼ã¿ã»ããããã¦ã³ãã¼ããããå å·¥ãããããã¹ã¯ãªãããå«ã¾ãã¦ãã¾ãã MNIST databaseããã¦ã³ãã¼ãããã«ã¯pylearn
æ¦è¦ ããæ°å¹´ Deep Learning å¢ã®éçãã¡ãããããèªåãå¦çã®é 㯠ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¯ãªã¯ã³ã³æ±ãã ã£ãã®ã«ãããã©ããã¦ãããªã£ãï¼èªåãã¡ãã£ã¨è§¦ã£ã¦ã¿ããããªãã¨è¨äºããã¹ã©ã¤ãããèªãã§ã¿ã¦ããæ´»æ§åé¢æ°ãã ã¨ãã å¶ç´ä»ãä½ã¨ããã·ã³ããï¼èãåãããä½ãä¸ãã¹ã£ã½ãååï¼ã¨ããä½è¨ã£ã¦ããã®ãããããããã å··ã«ã¯ ä¸èº«ãããã£ã¦ããªãã¦ãããç¨åº¦ 使ããããã±ã¼ã¸ãããã¤ãããããã ãããã£ãããªã®ã§å°ãã¯åå¼·ãããã Python 使ã£ã¦ ã§ããããªï¼ã¨æã£ã¦æ¢ãã¦ã¿ãã¨ããã§ã« Theano ã¨ããPython ããã±ã¼ã¸ã®éçºãã¼ã ãä½ã£ã DeepLearning Documentation 0.1 ã¨ãã大é¨ã®èå ¸ (ãã¤ãã«) ããã£ãã å½ç¶ã ããã®ææ¸ã§ã¯ Theano ã®æ©è½ããããã使ã£ã¦ãããããã±ã£ã¨è¦ã§ã¯ ä½ããã£ã¦ãã ããã
ã¯ããã« Machine Learning Advent Calendar 2013ã®15æ¥ç®ãæ å½ãã@yag_aysã§ãï¼å°éã¯ãã¤ãªã¤ã³ãã©ããã£ã¯ã¹ã¨ããè¨ç®æ©ã使ã£ã¦çç©å¦ãããåéã§ï¼çã¢ãã§ã¯ãªãéºä¼åã®æååç¸æã«æ ¼éãã¦ãã大å¦é¢çã§ãï¼ä»åã¯åå¿è ã®äººã対象ã«ï¼ãªãã¹ãæ°å¼ã使ããã«EMã¢ã«ã´ãªãºã ã«ã¤ãã¦è§£èª¬ãã¦ã¿ããã¨æãã¾ãï¼ EMã¢ã«ã´ãªãºã ã¯ï¼SVMããã¥ã¼ã©ã«ãããã¯ã¼ã¯ã¨ãã£ãè¯ã ããæ©æ¢°å¦ç¿ã®ææ³ã®ä¸ã¤ã§ã¯ãªãï¼æ©æ¢°å¦ç¿ã®ä¸ã§ä½¿ããã尤度æ大åã¨ããä¸é¨åãæ å½ããã¢ã«ã´ãªãºã ã§ãï¼ãã®ããå¤ãã®äººã«ã¨ã£ã¦EMã¢ã«ã´ãªãºã ã¯ï¼ããåä½ã使ã£ã¦ã¿ããã ã¨ãç¬èªã«æ¹è¯ãããããããããªå¯¾è±¡ã§ã¯ãªãã§ãããï¼ã§ãï¼EMã¢ã«ã´ãªãºã ãªãã¦ä»°ã ããååãä»ãããã¦ããã ããã£ã¦ï¼ããèªåã®ä»äºã«çµã¿è¾¼ãå ´åã«ã¯ä¸èº«ãç解ãã¦ããªãã¨ããªãEMã¢ã«ã´ãªãºã ã使ã£ãã®
scikit-learnã§ã¡ãã£ã¨ããæ©æ¢°å¦ç¿ãããã®ã¯ãLAMPã§ã¡ãã£ã¨ããWebã¢ããªãã¤ãããããç°¡åã§ãã ä¸è¨ã«èªåãå ¥éãã¦ãã2ã¶æéã§è¦ãããã¨ãã¾ã¨ãã¾ããã ##ãã¤ã©ã¤ã éè¦ã ã¨æã£ããã¨3㤠æ©æ¢°å¦ç¿ã®æ¦è¦ scikit learnã«ã¤ã㦠Google Prediction API,Mahout,Spark,Cythonã«ã¤ãã¦ããããä¸è¨ææ ##éè¦ã ã¨æã£ããã¨3㤠###1.æ©æ¢°å¦ç¿ã«æããå人ããã¤ã㨠ã©ããªæè¡ã§ãããã ãã©ãå人ã«èãã¦æ¦è¦ãå ã«æ´ãã§ããã¨èªä¿¡ãæã£ã¦é²ãããã¨ãã§ãã¾ãããã®èªä¿¡ãæã£ã¦ããã¨å¿ãæãã«ãããªãã¾ãã @fukkyyã«ãå ¥éãµã¤ãã¯é£ããç¨èªã¤ãã£ã¦ããããã¦ãããã©ãã©ã¤ãã©ãªã使ãã°æ©æ¢°å¦ç¿ã¯ããããªããã¨æãããå··ã«ããå ¥éãµã¤ããç¡è¦ãã¦ã©ã¤ãã©ãªããããå§ããã®ã§å ¥ããããã£ãã§ãã @ysks3n
ããã¶ãé ããªãã¾ããããã²ã¨ã¾ãå®æã§ããçåç¹ã»ç¿»è¨³ãã¹ãå§ãã¨ããææãããã¾ããããã©ãã©ããé¡ããã¾ã(14/12/18)ã 1é±éãããã大ä¸å¤«ã ããã¨ãããæ¬ã£ã¦ãããããã£ã¨ããéã«æ稿æ¥ã«ãªã£ã¦ãã¾ãã¾ãããæ¬å½ã¯Pylearn2ã使ã£ã¦RBMãå¦ç¿ããããã¨èãã¦ããã®ã§ãããå½¹ã«ç«ã¤å 容ãæ¸ãã«ã¯æéã足ããªããããã®ã§ããè¶ãæ¿ãã¾ãã ä»åã®ç®æ¨ Restricted Boltzmann Machineåã³Deep Belief Networkã®åºæ¬çãªåä½åçãç¥ã "A Practical Guide to Training Redstricted Boltzmann Machine"(GE Hinton, 2012)ã§é»éè¡(RBMã®æ§è½ãå¼ãåºãã³ã)ãå¦ã¶ å æ¥ã以ä¸ã®ãããªçºè¡¨ããã¾ãããä»åã®å 容ã¯ä»¥ä¸ã®ã¹ã©ã¤ãã®ç¼ãç´ãã»æ¹è¯ãå«ã¿ã¾ããåèã«ã©ã
ã¡ãã£ã¨èª¿ã¹ã¦ã¿ããã¿ã¤ãã«ã®ä»¶ã«ã¤ãã¦è¨åãã¦ãè¨äºããã¾ãå¤ããªãã£ãã®ã§ããã£ããæ¸ãã¦ã¿ã¾ãããªãããã®è¨äºã¯id:shakezoããã® å®åã§RandomForestã使ã£ãã¨ãã«èãããã㨠ã¸ã®ãªãã¼ã¸ã¥ã§ããã¨ããããå®ã¯åããã®è¨äºãèªãã§ãããå¤åRãªãå°ç¨ã®é¢æ°ãªãããããã ãããç°¡åã«ã§ããã¯ããã¨æã£ã¦ä»¥åãããç©æ¥µçã«ããããã«ãªã£ãã®ã§ããï¼ç¬ï¼ã ç·è«ï¼ä½ã§æ©æ¢°å¦ç¿ããã®ã«ãã¥ã¼ãã³ã°ãå¿ è¦ãªã®ï¼ ã©ããªæ©æ¢°å¦ç¿ã§ããä½ãããã®ãã¥ã¼ãã³ã°ãã©ã¡ã¼ã¿ãæã£ã¦ãã¾ããä¾ãã°ã½ãããã¼ã¸ã³SVMãªããã¼ã¸ã³ãã©ã¡ã¼ã¿Cãããã¾ãããéç·å½¢ã¬ã¦ã·ã¢ã³ã«ã¼ãã«SVMãªãããã«ã«ã¼ãã«ãã©ã¡ã¼ã¿ã®Ïã¨ããå ¥ãã¾ããSMOï¼é次æ大æé©åï¼ã¢ã«ã´ãªãºã ãå©ç¨ããã®ã§ããã°ãããã«ããã«toleranceã¨ããå ¥ã£ã¦ãã¾ãã ããããã¡ãã£ã¨ããã£ã¦ã¿ãã°ããåããã¨æã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}