2024-06-05

I.GPT-4からAGIへ:OOMを数える (1)

2027年までにAGIが実現する可能性は極めて高い。GPT-2からGPT-4までの4年間で、私たちは〜未就学児から〜賢い高校生までの能力を手に入れた。計算能力(~0.5桁またはOOMs/年)、アルゴリズム効率(~0.5OOMs/年)、および「趣味のない」向上(チャットボットからエージェントへ)のトレンドライントレースすると、2027年までに再び未就学児から高校生規模の質的ジャンプが起こると予想される。


見て。モデルたちはただ学びたいだけなんだ。あなたはこれを理解しなければならない。モデルたちは、ただ学びたいだけなんだ。

イリヤスーツバー2015年頃、ダリオ・アモデイ経由)

GPT-4の能力は、多くの人に衝撃を与えた。コードエッセイを書くことができ、難しい数学問題を推論し、大学試験突破することができるAIシステムである。数年前までは、これらは難攻不落の壁だと思っていた。

しかGPT-4は、ディープラーニングにおける10年間の猛烈な進歩の延長線上にあった。その10年前、モデル犬猫の単純な画像識別するのがやっとだった。4年前、GPT-2は半可通な文章をつなぎ合わせるのがやっとだった。今、私たちは思いつく限りのベンチマークを急速に飽和させつつある。しかし、この劇的な進歩は、ディープラーニングスケールアップにおける一貫した傾向の結果に過ぎない。

ずっと以前から、このことを見抜いていた人々がいた。彼らは嘲笑されたが、彼らがしたのはトレンドラインを信じることだけだった。トレンドラインは強烈で、彼らは正しかった。モデルはただ学びたいだけなのだ

私は次のように主張する。2027年までには、モデルAI研究者エンジニア仕事をこなせるようになるだろう、と。SFを信じる必要はなく、グラフ上の直線を信じるだけでいいのだ。

https://situational-awareness.ai/wp-content/uploads/2024/06/base_scaleup-1024x790.png

過去と将来の有効計算量(物理計算量とアルゴリズム効率の両方)の大まかな見積もりモデルスケールアップすればするほど、モデルは一貫して賢くなり、"OOMを数える "ことによって、(近い)将来に期待されるモデルインテリジェンスの大まかな感覚を得ることができます。(このグラフベースモデルスケールアップのみを示している。)

この記事で取り上げた一般的推定に基づく、効果的な計算物理的な計算アルゴリズム効率の両方)の過去と将来のスケールアップの概算。モデルスケールアップするにつれ、モデルは一貫して賢くなり、「OOMを数える」ことで、(近い)将来に期待されるモデルインテリジェンスの大まかな感覚を得ることができる。(このグラフベースモデルスケールアップのみを示している。"unobblings "は描かれていない)。

この作品では、単純に「OOMを数える」(OOM = order of magnitude10x = 1 order of magnitude)ことにします。1)計算、2)アルゴリズム効率(「効果的な計算」の成長として考えることができるアルゴリズム進歩)、3)「アンホブリング」(モデルデフォルトで足かせとなっている明らかな方法修正し、潜在的能力を引き出し、ツールを与えることで、有用性を段階的に変化させること)の傾向を見ますGPT-4以前の4年間と、GPT-4後の2027年末までの4年間に期待されるそれぞれの成長を追跡する。ディープラーニング効率的な計算のすべてのOOMで一貫して向上していることを考えると、将来の進歩予測するためにこれを使うことができる。

世間では、GPT-4のリリースから1年間、次世代モデルオーブンに入ったままであったため、ディープラーニングは停滞し、壁にぶつかっていると宣言する人もいた。しかし、OOMカウントすることで、私たちは実際に何を期待すべきかを垣間見ることができる。

結果は非常にシンプルだ。GPT-2からGPT-4への移行は、時々まとまりのある文章を並べることに感動的だったモデルから高校入試エースになるモデルへの移行であり、一度だけの進歩ではない。私たちOOMsを極めて急速に克服しており、その数値は、4年以上かけてGPT-2からGPT-4への質的ジャンプさらに~100,000倍の効果的なコンピュート・スケールアップが期待できることを示している。さらに、決定的なことは、それは単にチャットボットの改良を意味しないということだ。"unhobbling "利益に関する多くの明らかな低空飛行の果実を選ぶことで、チャットボットからエージェントへ、ツールからドロップイン・リモートワーカーの代替のようなものへと我々を導いてくれるはずだ。

推論は単純だが、その意味するところは注目に値する。このような別のジャンプは、私たちをAGIに、博士号や同僚として私たちそばで働くことができる専門家と同じくらい賢いモデルに連れて行く可能性が非常に高い。おそらく最も重要なことは、これらのAIシステムAI研究のもの自動化することができれば、次回のテーマである強烈なフィードバックループが動き出すということである

現在でも、このようなことを計算に入れている人はほとんどいない。しかし、AIに関する状況認識は、一歩下がってトレンドを見てみれば、実はそれほど難しいことではない。AI能力に驚き続けるなら、OOMを数え始めればいい。

続き I.GPT-4からAGIへ:OOMを数える (2) https://anond.hatelabo.jp/20240605204240

記事への反応 -
  • データの壁 これらすべての重要な変動要因になりうるものがあります。つまり、より多くのスクレイピング・データでより大きな言語モデルをプリ・トレーニングするという素朴なア...

    • アルゴリズムの効率化 コンピュートへの大規模な投資が注目される一方で、アルゴリズムの進歩も同様に重要な進歩の原動力であると思われる(そして、これまで劇的に過小評価され...

      • OOMを数える どうしてこうなった?ディープラーニングの魔法は、それがただ機能するということであり、あらゆる場面で否定的な意見にもかかわらず、その傾向線は驚くほど一貫して...

        • ディープラーニングのトレンド 過去10年間のディープラーニングの進歩のペースは、まさに驚異的だった。ほんの10年前、ディープラーニング・システムが単純な画像を識別することは...

          • この4年間 私たちは今、基本的に人間のように会話できるマシンを手にしている。これが普通に思えるのは、人間の適応能力の驚くべき証であり、私たちは進歩のペースに慣れてしまっ...

            • 2027年までにAGIが実現する可能性は極めて高い。GPT-2からGPT-4までの4年間で、私たちは〜未就学児から〜賢い高校生までの能力を手に入れた。計算能力(~0.5桁またはOOMs/年)、アルゴリズ...

              • X (twitter) で SITUATIONAL AWARENESS: The Decade Ahead https://situational-awareness.ai/ というのが回ってきて非常に示唆に富むものだったので、DeepL (無料版 API経由) で訳してみた。 レオポルド・アッシェ...

記事への反応(ブックマークコメント)

ログイン ユーザー登録
ようこそ ゲスト さん