Transformers have been recently adapted for large scale image classification, achieving high scores shaking up the long supremacy of convolutional neural networks. However the optimization of image transformers has been little studied so far. In this work, we build and optimize deeper transformer networks for image classification. In particular, we investigate the interplay of architecture and opt
1. ã¯ããã« 2. å è¡ç 究ããã®å¦ã³ 3. åæ 4. ã¢ã¼ããã¯ãã£å¤æ´åè£ æ´»æ§åé¢æ°ã®å¤æ´ (SwishGLU) Transformer layerã®ä¸¦åå biasãã©ã¡ã¼ã¿é¤å» Input-Output Embeddingã®å ±æ (Weight tying) 5. å°è¦æ¨¡ã¢ãã«ã§ã®å®é¨ å®é¨è¨å® Transformer layerã®ä¸¦åå SwishGLUã®é©ç¨ Bias parameterã®é¤å» biasåé¤ã®å®é¨ æåãããã¯æå¾ã®biasã ããæ®ã Input-Output Embeddingã®å ±æ (Weight tying) 6. ä¸è¦æ¨¡ã¢ãã«ã§ã®å®é¨ å®é¨è¨å® ã¢ãã«ãµã¤ãºã§ã®æ¯è¼ Shared Input output embeddings (weight tying) Transformer layerã®ä¸¦åå SwishGLUã®é©ç¨ 7. 13Bãã©ã¡ã¼ã¿ã¼
ä»åº¦ã¯ããã«è¤éãªå½¢ã§ãããé³è¨å·ãèªèãã¦ã¿ããè¤éãªå½¢ã®èªèã¯ï¼ä¾ãã°é¡èªèãªã©ï¼ã¯ CascadeClassifier ã§è¡ããåç´ãªèªèæ©ãå¤æ®µï¼ã«ã¹ã±ã¼ãï¼ã«çµã¿åããããã¨ã§èªè精度ãä¸ããææ³ããããæ©æ¢°å¦ç¿ãããã¼ã¿ã使ã£ã¦èªèãè¡ããããªã®ã§ãå¦ç¿ãã¼ã¿ãä½ãã®ãããã©ãããã ã¨æã£ã¦ããç´ æ´ããããã¼ã¸ãçºè¦ãããã¾ãã«ç¥ãã¼ã«ãããããã使ããã¦ããã ãã¾ãããã®ãµã¤ãã®ã¨ããã«ãããã£ã¦ããã¨èª¬æãçµãã£ã¦ãã¾ãã ã¨ãããããopencv_createsamples ãã¤ã³ã¹ãã¼ã«ãããããã±ã¼ã¸ãããããªãã®ã§ apt-file ã§æ¢ãã apt-file search opencv_createsamples libopencv-dev ããã±ã¼ã¸ã«å«ã¾ãã¦ããï¼Ubuntuã®å ´åï¼ãã¨ãããã£ãã®ã§ã¤ã³ã¹ãã¼ã«ã sudo apt-get install
æè¿ãOpenCVã§éãã§ãã¦ãä»å±ã®é¡æ¤åºç¨ã®åé¡å¨ã®ç²¾åº¦ããã¾ãè¯ããªãã®ã§ãèªåã§ä½ã£ã¦ã¿ããã¨ã«ãããããã¥ã¡ã³ããã¨ã£æ£ããã£ã¦ããã®ã§ãã¡ã¢ã¨ãã¦æ®ãã 次ã®ç»åã¯ä»å±ã®åé¡å¨ã使ã£ã¦æ¤åºãããã®ãFalse-Positiveãå¤ãã¦ããã¾ãé¡ãææã§ãã¦ããªãã®ããããã OpenCVã¯ãã¼ã¸ã§ã³2.4.2ã使ã£ãã æé ã¨ãã¦ã¯ ãµã³ãã«ã®åé ã©ãã«ä»ã åé¡å¨ã®çæ ã¨ãªãã 1. ãµã³ãã«ã®åé ä»åã¯ããã¸ãã£ããµã³ãã«ã¨ãã¬ãã£ããµã³ãã«ç¨ã«ãããã¦10392æéããã ç»åæ¤ç´¢ã®APIã§ã¯ãBing Search API on Azureãä¸çªããã¨æããGoogleã¯å¶éããã¤ãã¦ãYahooã¯ã¯ã¬ã«ã®ç»é²ãè¦ãã Bingã¯ãã¡ãã§ç¡æãã©ã³ãç»é²ããã°è¯ãã使ãã¨ãã¯Authãããã«ã¢ã«ã¦ã³ããã¼ãå ¥ãã¦ããã°è¯ããã¹ã¯ãªããã¯ä»¥ä¸ã«ããã¦ãããã htt
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}