ã¯ããã« ç·å½¢å帰ã¨å¦ç¿ã®ã³ã¼ã ãã¼ã¿ã»ãã PyTorch TF2.0 éã äºç´°ãªéãï¼å±¤ã®å®ç¾©ã®ä»æ¹ äºç´°ãªéãï¼ãã¹é¢æ°ã®æ¸ãæ¹ å¤§ããªéãï¼å¾é è¨ç®ã¨ãã©ã¡ã¼ã¿æ´æ° ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã®ç°¡åãªæ¸ãæ¹ PyTorch TF2.0 éã ç³ã¿è¾¼ã¿ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ PyTorch TF2.0 éã ããã£ã³ã° ç³ã¿è¾¼ã¿å±¤âç·å½¢å±¤ traininigãã©ã° RNN PyTorch TF2.0 éã 大ããªéãï¼å¤å±¤å äºç´°ãªéãï¼Bidirectional 大ããªéãï¼æ»ãå¤ã®ä¸¦ã³ å¦ç¿ ã¯ããã« æè¿KerasããPyTorchã«æµãã¦ãã人ãã¡ãå¤ãè¦åãããã¾ãããã®ä¸ã§ã¦ãKerasã§æ¸ãã¦ããã³ã¼ããPyTorchã®ã³ã¼ãã§å®è£ ããã«ã¯ã©ãããã°è¯ããã ããï¼ãã¨ãã声ãããã¾ããè¦ã¯ãä»ã¾ã§ä½¿ã£ã¦ãããã¬ã¼ã ã¯ã¼ã¯ã§ãããã¨ãã¦ãããã¨ããå¥ã®ãã¬ã¼ã ã¯ã¼ã¯ã§ãã
ããã«ã¡ã¯ãGMOã¢ããã¼ã±ãã£ã³ã°ã®S.Rã§ãã è¯ãã¢ãã«ãä½ãã«ã¯ã大ããªãµã¤ãºã®å¦ç¿ãã¼ã¿ãå¿ è¦ã§ããããã¦ãé«éã«ã¢ãã«ããã¬ã¼ãã³ã°ãããã¨ãã§ããã°ãã¤ãã¬ã¼ã·ã§ã³ã®ç縮ã«ãªãã¾ããä»åã¯é«éã«ã¢ãã«ããã¬ã¼ãã³ã°ããããã«ãè¤æ°ã®GPUã§ãã£ã¼ãã©ã¼ãã³ã°ã®ã¢ãã«ããã¬ã¼ãã³ã°ããæ¹æ³ãæ稿ãã¾ããæ¬è¨äºä¸ã®å³èª¬ã¯ãçè ãèªãã®ç°å¢ã§ä½æãããã®ãå«ã¿ã¾ãã 1. Libraryã¨Tool: ä»åã¯ä¸è¨ã®ãã£ã¼ãã©ã¼ãã³ã°ã®ãã¼ã«ã¾ãã¯ã©ã¤ãã©ãªãå©ç¨ãã¦ãã¾ããã Tensorflow ãã£ã¼ãã©ã¼ãã³ã°ã«å¯¾å¿ãã¦ãããGoogleã®å種ãµã¼ãã¹ãªã©ã§ãåºãæ´»ç¨ããã¦ããã 2017å¹´2æ15æ¥ã« TensorFlow 1.0 ããªãªã¼ã¹ãããã 対å¿ããã°ã©ãã³ã°è¨èªã¯Cè¨èªãC++ãPythonãJavaãGoã 対å¿OSã¯64ãããã®Linuxï¼ãã ããã¤ããªé å¸ã¯
ä»ã®DLã©ã¤ãã©ãªãåå¼·ããã®ãé¢åã¨ããçç±ã§kerasã§å®è£ ããã¦ããªããããã¯ã¼ã¯ãçµãã§ã¯ãããªãã¨ããã¢ã³ããã¿ã¼ã³ã®è©±ãã¤ã¾ãéã®kerasã«å¯¾ããé²è¡è¡ã®è©±ã§ãã kerasã§ã´ãªã´ãªå¦ç¿ã³ã¼ããæ¸ãã¦ã¯ãããªã kerasã¯LSTMãæ°è¡ã§æ¸ããããvggãªã©ã®æåãªã¢ãã«ãæã£ã¦ããã便å©ãªã©ããã¼ã¨ãªã£ã¦ãã¾ãããkerasã§å®è£ ããã¦ããªãè«æã®ã³ã¼ããæ¸ããã¨ã¯æ¥µåé¿ãã¾ããã keras以å¤ã«æ £ãã¦ããªãã¦ãã§ãã ã¨ã£ã¨ã¨tensorflowãpytorchãåå¼·ãã¦ãã ããã çç± é常ã®ãã£ã¼ããã©ã¯ã¼ããªåé¡orå帰ã®ãããã¯ã¼ã¯ï¼å ¨çµåãCNNãautoencoderãªã©ï¼ãæ¢ã«ã©ããã¼ãç¨æããã¦ããLSTMã¯ç¬æã«å®è£ ã§ãã¾ããããã©ã¡ã¼ã¿ãã¥ã¼ãã³ã°ãç°¡åãªã®ã§æ¯ékerasã使ãã¾ããã ãã ã以ä¸ã®ãããªå ´åã¯çµ¶å¯¾ã«kerasã使ããªãã§ãã ã
転移å¦ç¿ã¨ãã¦è¨ç·´æ¸ã¿ã¢ãã«ã¯é常ã«æç¨ã§ããããã¾ã«éä¸ã«Dropoutãå ¥ããããBatchNormãå ¥ããããªã©å°ã£ããã¨ãããã¾ããä»åã¯VGG16ã«BatchNormãå ¥ãããMobileNetã«Dropoutãå ¥ããã試ãã¦ã¿ã¾ãã VGG16ã«BatchNormalizationãå ¥ãã çè«ã¨å®è£ ä¸ã®æ³¨æ 転移å¦ç¿ã¨ãã¦ãã使ãããVGG16ã§ãããå®ã¯å¤èãã¢ãã«ã§BatchNormalizationãå ¥ã£ã¦ãã¾ãã1ãç¾å¨ã®åé¡åé¡ã«ããã¦ããã»ã©ã®çç±ããªããã°BatchNormalizationã¯å ¥ããã¹ããªã®ã§å ¥ãã¦ã¿ã¾ããã2ã VGG16ã§ã¯ããConvâConvâConvâPoolãã®ããã«ä¸¦ãã§ãã¾ãããConvâConvããConvâBatchNormâReLUâConvââ¦ãã¨ç½®ãæãã¾ããã¾ãå ã®Convã«ã¯ReLUã®æ´»æ§åé¢æ°ãã¤ãã¦ããã®ã§ãCo
Posted by Sandeep Gupta, Josh Gordon, and Karmel Allison on behalf of the TensorFlow team TensorFlow is preparing for the release of version 2.0. In this article, we want to preview the direction TensorFlowâs high-level APIs are heading, and answer some frequently asked questions. Keras is an extremely popular high-level API for building and training deep learning models. Itâs used for fast protot
åæ¸ã å ¨ã¦ã®ããã°ã©ãã¼ã¯åçµããå§ã¾ãã by俺 ãã®è¨äºã¯æ©æ¢°å¦ç¿å ¥éç¨ã§ã¯ããã¾ãããè¯è³ªãªåçµå ãæä¾ããããã«ããã¾ããç¡é§ã®ãªãã³ã¼ãã¨ç¡é§ã®ãªã説æãç¨æããã¤ããã§ããkerasã³ã¼ãã£ã³ã°ãå¿ããããæã«ç«ã¡è¿ãããåç¹ã¨ãªãã°å¹¸ãã§ãã å®è¡ç°å¢ python (3.7.10) tensorflow (2.4.1) keras (2.4.3) 対象è pythonãèªåã®ç°å¢ã§åããã人 ã㤠kerasåå¿è â kerasã¨ã¯ python ã§æ¸ãããé«æ°´æºã®ãã¥ã¼ã©ã«ãããã¯ã¼ã¯ã©ã¤ãã©ãªã (keraså ¬å¼) ãã£ã¨ããããããè¨ãã¨... ãã£ã¼ãã©ã¼ãã³ã°ãèªåã§å ¨é¨ä½ãã®ã¯å¤§å¤ã ã§ããkerasã使ãã¨ç°¡åã ãï¼ â kerasã³ã¼ãã£ã³ã°ã®æµã ãã¼ã¿ãç¨æããã ã¢ãã«ãæ§ç¯ããã ã¢ãã«ã«ãã¼ã¿ãå¦ç¿ãããã ã¢ãã«ãè©ä¾¡ããã â»ã¢ãã«ã¨ã¯ãã
ãã£ã¼ãã©ã¼ãã³ã°ã§å¦ç¿ãé²ãã ãã¨ã«å¦ç¿çãä¸ãããã¨ããã¨ãã©ãããã¾ããKerasã§ã¯å¦ç¿çãæ¸è¡°ï¼Learning rate decayï¼ãããã ãã§ã¯ãªããepochæ°ã«å¿ãã¦ä»»æã®å¦ç¿çãé©ç¨ããLearningRateSchedulerã¨ãã便å©ãªã¯ã©ã¹ãããã¾ãããããè¦ã¦ããã¾ãããã å¦ç¿çå¤åãªã 10層ã®CNNã§CIFAR-10ã§æ¤è¨¼ç²¾åº¦90%ãéæããã³ã¼ãã使ãåããã¾ããããã¯å¦ç¿çã®å¤åãããã¾ãããAdamã§ãã£ã¨ããã©ã«ãã®0.01ã®å¦ç¿çãç¶æãã¾ãã å¦ç¿ã®éç¨ã¯æ¬¡ã®ããã«é²ã¿ã¾ãã ä»»æã®å¦ç¿çæ¸è¡°ï¼SGDï¼ æ¬¡ã«ãDenseNetã®è«æã§åºã¦ãããªããã£ãã¤ã¶ã¼ã¯SGDï¼ã¢ã¡ã³ã¿ã ï¼ã§ãåæã®å¦ç¿çã¯0.1ã§ãå ¨ä½ã®50%ã®epochã§å¦ç¿çã1/10ï¼0.01ï¼ã«ãå ¨ä½ã®75%ã§ããã«1/10ï¼0.001ï¼ã«ããã¨ããæ¸è¡°æä½ãè¡ãã¾ããDen
Keras ã®ããã¯ã¨ã³ãã« TensorFlow ã使ãå ´åãããã©ã«ãã§ã¯ä¸ã¤ã®ããã»ã¹ã GPU ã®ã¡ã¢ãªãå ¨ã¦ä½¿ã£ã¦ãã¾ãã ä»åã¯ããã®æåãå¤æ´ãã¦ä½¿ãåã ã確ä¿ãããããã«æ¹ããããæ¹ãæ¸ãã ç°å¢ã«ã¯æ¬¡ã®ããã«ãã¦ã»ããã¢ãããã Ubuntu 16.04 LTS ã使ã£ã¦ããã blog.amedama.jp ãµã³ãã«ã¨ãã¦åä½ãããã¢ããªã±ã¼ã·ã§ã³ã«ã¯ Keras ãæä¾ãã¦ãã MNIST ãã¼ã¿ã»ããã CNN ã§èªèãããã®ã使ãã ã¾ãã¯ããããã¦ã³ãã¼ããã¦ãããã åæã«ãã»ãã·ã§ã³ãã¯ãªã¢ãããããã追å ãã¦ããã $ wget https://raw.githubusercontent.com/fchollet/keras/master/examples/mnist_cnn.py $ echo 'K.clear_session()' >> mnist_c
ããã«ã¡ã¯ãã¢ããã³ã¹ããã¯ããã¸ã¼é¨ã®R&Dãã¼ã æå±å²©åã§ãã ä»åã¯Kerasã使ã£ã¦ã¡ã¢ãªã«ä¹ãåããªããããã®å¤§éãã¼ã¿ãå¦ç¿ãããæ¹æ³ã«ã¤ãã¦ç´¹ä»ãããã¨æãã¾ãã å人çã«ããã£ããã¤ã³ããªã®ã§ãåãããã«å°ã£ã¦ãæ¹ã ã®åã«ãªããã°â¦ã¨æã£ã¦ã¾ãã Kerasã¨ã¯ä½ãããã¨ã使ãæ¹äºã ã¯ã¾ãå¥éè¨äºãæ¸ãããã¨æãã¾ãã 対象èªè Kerasã使ã£ã¦ããç¨åº¦ã®å¦ç¿ã¯åºæ¥ã人 Pythonãããç¨åº¦èªãã人 Unixç³»OSã§Kerasãåããã¦ãã人 ä»åã¯ã¢ãã«ã®æ§ç¯ãªã©ã¯çç¥ãã¦ãã¾ãã 確èªç°å¢ Pythonï¼3.6.1 Kerasï¼2.0.8 tensorflow-gpuï¼1.3.0 (ä»åã¯ç¹ã«é¢ä¿ããã¾ãã) æ³å®å ´é¢ ããã§ã¯ãå ·ä½çãªå ´é¢ãæ³å®ãã¦ã¿ã¾ãããã ã¯ã¨ã¹ãã®ãã°ã使ã£ã¦å¦ç¿ããããã¯ãªã¢ or notã®ãã¼ã¿ãcsvãã¼ã¿ã¨ãã¦æå ã«ããã ã¯ã¬ã³
ã¯ããã« Eager Executionã®æ¸ãæ¹ ã¤ã³ãã¼ã ãã¼ã¿ã®æºå ã¢ãã«ã®æ¸ãæ¹ å¦ç¿ã³ã¼ã ã¢ãã«ã®è©ä¾¡ è£è¶³ Google colabã§ã®TensorBoard æå¾ã« ã¯ããã« TensorFlow2.0ãã Eager Execution 㨠Keras API ãæ¨æºã«ãªãè¦è¾¼ã¿ã§ãããã§ã«ããã°ã§ã¯ãã®ãã¨ãä½åº¦ãåãä¸ãã¦ãã¾ãã www.hellocybernetics.tech www.hellocybernetics.tech ä»åã¯ãTF2.0ããæãæ¨æºçã«ãªãã¨æãããã³ã¼ãã®æ¸ãæ¹ãè¦ã¦ããã¾ãããã¨ãããã¼ãã«ãªãã¾ãã ç¹ã«ãã£ã¼ãã©ã¼ãã³ã°ã®ãã¯ããã¯ãææ³ã®èå¯ãªã©ã¯è¡ããªãã®ã§ãããã¾ã§æ¸ãæ¹ã®åèã¨ããç¨åº¦ã«å¾¡è¦§ãã ããã ã³ã¼ãã¯google colabã§æ¸ãã¦ãã£ãã®ã§ãåºæ¬çã«ã¯jupyter notebookãªã©ã§åä½ããããã¨ãæ³
ããã«ã¡ã¯ãã¢ããã³ã¹ããã¯ããã¸ã¼é¨ã®R&Dãã¼ã æå±å²©åã§ãã ä»åã¯Kerasã§è¤æ°ã®GPUã使ãæ¹æ³ãæ¸ãããã¨æãã¾ãã Keras 2.0.9ããç°¡åã«è¤æ°GPUã使ç¨ããé«éåãå¯è½ã«ã Keras2.0.9ããtraining_utilsã¨ããã¢ã¸ã¥ã¼ã«ã«multi_gpu_modelã¨ããé¢æ°ã追å ããã¾ããã ã³ã¬ã使ãã¨ãå¦ç¿ãè¤æ°ã®GPUã§è¡ããããã¨ãå¯è½ã«ãªãã¾ãã inputãGPUã®æ°ã ãåå²ãããã¨ã«ãã£ã¦ã並ååãå®ç¾ãã¦ããããã§ãã keras/training_utils.py at master · keras-team/keras ã§ã¯ãå®éã«è©¦ãã¦ã¿ã¾ãããã ç°å¢ AWS EC2(p2.8xlarge) -> GPU8æ¬ Deep Learning Base AMI (Ubuntu) Version 2.0 (ami-041db87c) -
ã³ã¼ã«ããã¯ã®ä½¿ãæ¹ ã³ã¼ã«ããã¯ã¯è¨ç·´ä¸ã§é©ç¨ãããé¢æ°éåã§ãï¼è¨ç·´ä¸ã«ã¢ãã«å é¨ã®ç¶æ ã¨çµ±è¨éãå¯è¦åããéã«ï¼ã³ã¼ã«ããã¯ã使ãã¾ãï¼Sequentialã¨Modelã¯ã©ã¹ã®.fit()ã¡ã½ããã«ï¼ãã¼ã¯ã¼ãå¼æ°callbacksã¨ãã¦ï¼ã³ã¼ã«ããã¯ã®ãªã¹ãã渡ããã¨ãã§ãã¾ãï¼ã³ã¼ã«ããã¯ã«é¢é£ããã¡ã½ããã¯ï¼è¨ç·´ã®å段éã§å¼ã³åºããã¾ãï¼ [source] Callback keras.callbacks.Callback() ãã®æ½è±¡åºåºã¯ã©ã¹ã¯æ°ããã³ã¼ã«ããã¯ãæ§ç¯ããããã«ä½¿ç¨ããã¾ãï¼ ãããã㣠params: è¾æ¸ï¼è¨ç·´ã®ãã©ã¡ã¼ã¿ï¼ä¾: åé·æ§ï¼ããããµã¤ãºï¼ã¨ããã¯æ°...ï¼ï¼ model: keras.models.Modelã®ã¤ã³ã¹ã¿ã³ã¹ï¼å¦ç¿ãããã¢ãã«ã¸ã®åç §ï¼ ã³ã¼ã«ããã¯é¢æ°ãå¼æ°ã¨ãã¦ã¨ãè¾æ¸ã®logsã¯ï¼ç¾å¨ã®ãããæ°ãã¨ããã¯æ°ã«é¢é£ãããã¼
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}