ã¯ããã« ããã«ã¡ã¯ãããã¯ã¨ã³ãã¨ã³ã¸ãã¢ã®ããããã§ããæ¬è¨äºã§ã¯ GitHub Actions ã®ã¯ã¼ã¯ããã¼ãå°ãå®å ¨ã«æ¸ãã³ããä¸ã¤ãç´¹ä»ãããã¾ãã ãã®è¨äºã¯ã¨ã¢ã¼ã·ã§ã³ãã㯠Advent Calendar 2024ã®10æ¥ç®ã®è¨äºã§ãã èå¼±æ§ãå«ãã¯ã¼ã¯ããã¼ã®ä¾ ä»ååãä¸ããã®ã¯ã¹ã¯ãªããã¤ã³ã¸ã§ã¯ã·ã§ã³å¯¾çã§ããä¾ã¨ãã¦å ¬å¼ããã¥ã¡ã³ãã§èå¼±æ§ãå«ãã¨ãã¦æãããã¦ããã³ã¼ããè¦ã¦ã¿ã¾ããããã¯ãã«ãªã¯ã¨ã¹ãã®ã¿ã¤ãã«ã octocat ã§å§ã¾ã£ã¦ããã°ãPR title starts with 'octocat'ããåºåãã¦æåããããã§ãªããã°ãPR title did not start with 'octocat'ããåºåãã¦å¤±æããã¨ãããã®ã§ãã - name: Check PR title run: | title="${{ github.event
Generating step-by-step "chain-of-thought" rationales improves language model performance on complex reasoning tasks like mathematics or commonsense question-answering. However, inducing language model rationale generation currently requires either constructing massive rationale datasets or sacrificing accuracy by using only few-shot inference. We propose a technique to iteratively leverage a smal
æ°ãã10ã·ãªã¼ãºã¯ãè¸è¡æ§ãã¯ã©ãããã³ã·ãããåè¶ããã¨ã³ã¸ãã¢ãªã³ã°ãèåããããã©ã³ãã«ããé³æ¥½ã«å¯¾ããæã®ç©¶æ¥µã®è¡¨ç¾ã§ããæ¥æ¬ã®å·å´ããã³ç½æ²³ã«æ ç¹ãç½®ããã©ã³ãã®å°ä»»ã¨ã³ã¸ãã¢ãã¼ã ã«ãããæ°ãåããªãã»ã©ã®æéãè²»ãããéçºã®ææã§ãã10ã·ãªã¼ãºã®åã¢ãã«ã¯ãæå 端ã®ãã¯ããã¸ã¼ãç¾ãããã¶ã¤ã³ã¨è¦äºãªä»ä¸ããæ½ãããã¨ã³ã¯ãã¼ã¸ã£ã¼ã«åãã¦ãã¾ãã
ãã©ã¹ãã¬ã¹=å±±ç°é¼å¤ªéãç±³ã¢ãã¾ã³ã»ãããã»ã³ã ãèªç¤¾ã§è¨è¨éçºãã2種é¡ã®äººå·¥ç¥è½ï¼AIï¼åå°ä½ã®ãã¡ãAIãçããå°ããæ¨è«ãã¨å¼ã¶è¨ç®å¦çã«ç¹åãã製åã®éçºãçµãããã¨ãããã£ãã大éã®ãã¼ã¿ã§AIãéãããå¦ç¿ãã«é©ããåå°ä½ã ãã§å¹ åºããã¼ãºãã¾ããªããã¨å¤æããç 究éçºè³æºãéä¸ããããã¯ã©ã¦ããµã¼ãã¹åä¼ç¤¾ã®ç±³ã¢ãã¾ã³ã»ã¦ã§ãã»ãµã¼ãã¹ï¼AWSï¼ã§åå°ä½ãªã©ã®è¨ç®ã¤ã³ãã©ãæ
社ä¼äººçæ´»ã®ååãããªã¼ã©ã³ã¹ãååãIIJã§éããã¨ã³ã¸ãã¢ãå ã ã¯ã¢ããªã±ã¼ã·ã§ã³å±ã ã£ãã¯ãããã¯ã©ã¦ãã¨åºä¼ã£ãã°ããã«å身ãã¤ã³ãã©å±ã«å£²ã渡ãç¾½ç®ã«ãç¾å¨ã¯ã³ã³ããæè¡ã«å¾åä¸ã ãèªãã ãã¨é·ãã®ã§å²æãã¿ã°ãã¤ãããªãã³ã³ãããã¯ã©ã¦ãããã¼ããã¤ã¯ããã©ãã ãIIJ 2024 TECHã¢ããã³ãã«ã¬ã³ãã¼ 12/6ã®è¨äºã§ãã ä»å¹´ã®IIJã¢ããã³ãã«ã¬ã³ãã¼ã¯ãéç¨ãããã¼ãã¨ãããã¨ãªã®ã§ãéç¨ã«æ¬ ãããªãå¿ æºãã¼ã«çé ã§ããSSHãåãä¸ããSSHã®ç§å¯éµãå®å ¨ã«ç®¡çããæ¹æ³ã«ã¤ãã¦èãããã¨æãã¾ãã ãã¨ãSSHç§å¯éµãæ¼æ´©ãã¦ããå®å ¨ã確ä¿ããæ¹æ³ è¸ã¿å°ãµã¼ãã«SSHç§å¯éµãç½®ããã«å©ç¨ããæ¹æ³ SSHç§å¯éµã®å®å ¨ãªç½®ãå ´æãèãã SSHç§å¯éµã¯ä¸è¬çã« ~/.sshã«ãã¡ã¤ã«ã¨ãã¦ç®¡çããã¦ããã¨æãã¾ãããä¸å®ã«æãããã¨ã¯ããã¾ãããï¼ ãã¼ãPCã«
SREã®è åã§ãã ãã®è¨äºã¯ã«ã³ã Advent Calendar 2024ã®4æ¥ç®ã®è¨äºã§ãã æè¿ã®Redashã®éçºç¶æ³ã«ã¤ãã¦ãç¥ã£ã¦ããç¯å²ã§ãããæ¸ãã¦ã¿ããã¨æãã¾ãã redash.io Redashã¨ããã°æ§ã ãªãã¼ã¿ã½ã¼ã¹ãSQLã使ã£ã¦å¯è¦åã§ããBIãã¼ã«ã§ãã«ã³ã ã§ãæ¥åã®ãã¼ã¿åæã«ä½¿ããã¦ãã¾ãã ãã ãä¸æåã«Redashãã¯ãã£ã¦ããé ã«æ¯ã¹ãã¨ãæè¿ã§ã¯ãã¬ã³ãããã¯å¤ãããããªå°è±¡ãããã¾ãã å®éãSaaS Redashãçµäºãã2021å¹´ãã2023å¹´ã®4æãããã®GitHubã®ã¢ã¯ãã£ããã£ãè¦ãã¨ãæ´»åãåæ»ãã¦ãã¾ãã Contributors to getredash/redash · GitHub ãã®é ãCVE-2023-0286ã®å¯¾å¿ã®ãããç§ã¯Redashã®Dockerã¤ã¡ã¼ã¸ã®ãã¼ã¹ãDebian busterããbullsey
åä½è ã®å¤§åå æ´èªããç£ç£ã»èæ¬ãæ å½ãã¢ãã¡ã¼ã·ã§ã³å¶ä½ãæ±äº¬ã ã¼ãã¼æ°ç¤¾ï¼ç¾ï¼ãã ã¹ã»ã¨ã³ã¿ãã¤ã¡ã³ãï¼ããåããåå ´ç¨ã¢ãã¡ã¼ã·ã§ã³ãAKIRAãã 2019å¹´ã®ããªæ±äº¬ãèå°ã«ãè¬ã®åå¨"ã¢ãã©"ãå·¡ããä¸è¯å°å¹´ãè»éãã²ãªã©ãã¡ãç¹°ãåºãã壮絶ãªéãããå§åçãªä½ç»ã¨é³æ¥½ã§æãåãSFã¢ãã¡ã®éåå¡ãå ¬éãã30年以ä¸çµã£ãä»ãªãå½å å¤ã®ã¯ãªã¨ã¤ã¿ã¼ã«å½±é¿ãä¸ãç¶ãã¦ãã¾ããååãã¬ãã¢é ä¿¡æã¯ã©ã¤ããã£ãããéæ¾ãã¾ããä¼èª¬çä½åããã®æ©ä¼ã«ä½åº¦ã§ããä½é¨ãã ããã è¦è´å¯è½æéï¼11æ30æ¥(å)21ï¼00ï½12æ6æ¥(é)23ï¼59ã¾ã§ åç»é ä¿¡ãµã¼ãã¹ã§ãé ä¿¡ä¸ã§ãããã²ä½åº¦ã§ããè¦è´ãã ããï¼ ãã³ãã¤ãã£ã³ãã«ï¼https://www.b-ch.com/titles/205/ ã¢ãã¡ã¿ã¤ã ãºï¼https://www.amazon.co.jp/gp/video/st
[ãã°ã¤ã³æ°è¦IDç»é²]é²è¦§å±¥æ´ãå©ç¨ã¬ã¤ã R-HW62V(N) [ã©ã¤ãã´ã¼ã«ã] ã®ã¯ãã³ãæ²ç¤ºæ¿ ãã¼ã > å®¶é» > å·èµåº«ã»å·å庫 > æ¥ç«(HITACHI) > R-HW62V > R-HW62V(N) [ã©ã¤ãã´ã¼ã«ã] > ã¯ãã³ãæ²ç¤ºæ¿ æ¥ç« 2024å¹´ 2æä¸æ¬ çºå£² R-HW62V(N) [ã©ã¤ãã´ã¼ã«ã] ããããã¾ï¼ã²ãinå·åããã¾ããã¨ãã«ãããæ°é®®ã¹ãªã¼ãéè室ããæ¡ç¨ããå·èµåº«ï¼617Lï¼ãèªåã§ç´ æ©ããããããã¼ã ããªã¼ã¸ã³ã°ãã§ããã å·èµå®¤å ¨æ®µããã«ãä¿åå¯è½ã§ãããä½ãã®ãã«ã温度ï¼ç´2度ï¼ã¨ããããå·æ°ã§é®®åº¦ãé·æã¡ããããå·èµå®¤ç¬ç«å·å´ã·ã¹ãã ãã§ãã£ããçã¨ãã æ¥ãã§å·ããããã¨ãã«ä¾¿å©ãªãã¯ã¤ãã¯å·å´ããä¹¾ç¥ãæãåãããªãç´-1度ã§èãéãããããä¿åãããç¹é®®æ°·æ¸©ã«ã¼ã ããæè¼ã ãæ°ã«å ¥ãç»é² 31 æå®ãç¥ããã¡ã¼ã«ãåãåãã¾
[ãã°ã¤ã³æ°è¦IDç»é²]é²è¦§å±¥æ´ãå©ç¨ã¬ã¤ã R-HWC62T(N) [ã©ã¤ãã´ã¼ã«ã] ã¬ãã¥ã¼ã»è©ä¾¡ ãã¼ã > å®¶é» > å·èµåº«ã»å·å庫 > æ¥ç«(HITACHI) > R-HWC62T > R-HWC62T(N) [ã©ã¤ãã´ã¼ã«ã] > ã¬ãã¥ã¼ã»è©ä¾¡ æ¥ç« 2023å¹´ 2æä¸æ¬ çºå£² R-HWC62T(N) [ã©ã¤ãã´ã¼ã«ã] 天äºãèå£åããå¹ ã¯ãã®ã¾ã¾ã§å®¹éãã¢ãããã大容éå·èµåº«ï¼617Lï¼ãã©ãããªãã§ããã®ã¾ã¾ãµãã¨ä¿åã§ãããã¾ããã¨ãã«ãããæ¡ç¨ã æ¥ãã§å·ããããã¨ãã«ä¾¿å©ãªãã¯ã¤ãã¯å·å´ããåãããªã-1度ã§ä¿åãããç¹é®®æ°·æ¸©ã«ã¼ã ããã¿ãã¿ããããé·æã¡ãããæ°é®®ã¹ãªã¼ãéè室ããæè¼ã å·èµåº«ã®é£æã®ç®¡çãã¹ããã§ãµãã¼ããããæ¥ç«å·èµåº«ã³ã³ã·ã§ã«ã¸ã¥ã¢ããªãã«å¯¾å¿ãä¿åããé£æãç»é²ãã¦ä¸è¦§ç®¡çã§ããã ãæ°ã«å ¥ãç»é² 170 æå®ãç¥ããã¡ã¼ã«ãåãåã
ç¹è¨±åå¾ã³ã³ã¹ã¿ã³ãã»ãã©ã¼ã¹æè¡ã«ãããã¬ã¹ã¹ããªã³ã°å¼ã®ãããªçµå¹´å£åããªãå¤ç¨éåãã¢ãã¿ã¼ã¢ã¼ã ã§ãã ã¢ãã¿ã¼ãæã¡ä¸ãããã¨ã§ãã¹ã¯ãåºã使ãã¾ãã使ç¨ãã¦ããªãã¨ãã¯ã³ã³ãã¯ãæãããããããã«çã¹ãã¼ã¹åãã§ãã¾ãã 34ã¤ã³ãã¾ã§ã3.2kgãã11.3kgã¾ã§ã®ã¢ãã¿ã¼ã«å¯¾å¿ãVESA 100x100mmã75x75mmã ã¯ã©ã³ãã¯60mmã¾ã§ã®åããã°ãã¡ããã¯ç´å¾8~50ï½ï½ã®ç©´ã57ï½ï½ã¾ã§ã®åãã«åãä»ãå¯è½ã§ãã ããããã©ãã¯ãã¢ã«ãè²ã«ã¯ã°ãã¡ãããã¦ã³ããä»å±ãã¦ãã¾ãããã¯ã¤ãã«ã¯ä»å±ãã¦ãã¾ãããå¥å£²ã°ãã¡ãããã¦ã³ã(98-034)ãå¿ è¦ã§ãã å®å®æ§ã«åªãã製åã§ä¿è¨¼æéã¯å®å¿ã®10å¹´éãæéæ©è½ã¯é·å¹´ã«æ¸¡ããã©ãã«ãªãé«ã調æ´ãå¯è½ã§ãã LXã¢ã¼ã ãã¨ã¯ã¹ãã³ã·ã§ã³ããã¼ã¹ããã¼ã«ããã¹ã¯ã¯ã©ã³ããã°ãã¡ãããã¦ã³ã(ãã¯ã¤ãã¯å¥å£²)ãåã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}