Amazon Web Services ããã° Amazon EMR 㧠Apache Spark ã¢ããªã±ã¼ã·ã§ã³ã®ã¡ã¢ãªããã¾ã管çããããã®ãã¹ããã©ã¯ãã£ã¹ ããã°ãã¼ã¿ã®ä¸çã«ãããä¸è¬çãªã¦ã¼ã¹ã±ã¼ã¹ã¯ããã¾ãã¾ãªãã¼ã¿ã½ã¼ã¹ããã®å¤§éã®ãã¼ã¿ã«ãããæ½åº/å¤æ (ET) ã¨ãã¼ã¿åæã®å®è¡ã§ããå¤ãã®å ´åããã®å¾ã§ãã¼ã¿ãåæãã¦ã¤ã³ãµã¤ããåå¾ãã¾ãããã®ãããªå¤§éã®ãã¼ã¿ãå¦çããããã®æã人æ°ã®ããã¯ã©ã¦ããã¼ã¹ã½ãªã¥ã¼ã·ã§ã³ã®ã²ã¨ã¤ã Amazon EMR ã§ãã Amazon EMR ã¯ãAWS ã§ã® Apache Hadoop ããã³ Apache Spark ãªã©ã®ããã°ãã¼ã¿ãã¬ã¼ã ã¯ã¼ã¯ã®å®è¡ãã·ã³ãã«åããããã¼ã¸ãã¯ã©ã¹ã¿ã¼ãã©ãããã©ã¼ã ã§ããAmazon EMR ã¯ãçµç¹ãè¤æ°ã®ã¤ã³ã¹ã¿ã³ã¹ãæã¤ã¯ã©ã¹ã¿ã¼ãã»ãã®æ°åã§ã¹ãã³ã¢ãããããã¨ãå¯è½ã«ã
ClouderaãAWSä¸ã§PaaSãCloudera Altusãæä¾ãçºè¡¨ãããã°ãã¼ã¿ã®åæåºç¤ããµã¼ãã¹ã¨ãã¦æä¾ å æ4æ28æ¥ã«ãã¥ã¼ã¨ã¼ã¯è¨¼å¸åå¼æã«ä¸å ´ããã°ããã®Clouderaã¯ãã¯ã©ã¦ããµã¼ãã¹ãCloudera Altusããçºè¡¨ãã¾ããã ããã¾ã§ä¸»è¦ãªHadoop/Sparkã®ãã£ã¹ããªãã¥ã¼ã·ã§ã³ãã³ãã¼ã¨ãã¦ç¥ããã¦ããå社ã«ããã¯ã©ã¦ããµã¼ãã¹ã®æä¾éå§ã¯ãå社ã«ã¨ã£ã¦æ°ããªãã¸ãã¹å±éã§ãã Cloudera Altusã¯ãä¸è¨ã®ããã«AWSã®ããã«æ§ç¯ãããSpark/MapReduce2/Hiveãæä¾ããã¯ã©ã¦ããµã¼ãã¹ãããããPlatform as a Serviceï¼PaaSï¼ã®ä¸ç¨®ã§ãããã°ãã¼ã¿ã®åæãªã©å®è¡ããåºç¤æ©è½ããµã¼ãã¹ã¨ãã¦æä¾ãã¾ãã ã¦ã¼ã¶ã¼ã¯ã¯ã©ã¹ã¿ã®ç®¡çãéç¨ã®æéãããããã¨ãªãããã®ããã§å®è¡ããã¢ããªã±ã¼ã·ã§ã³ã®
åèè ï¼Vartika Singh åæï¼Deep Learning Frameworks on CDH and Cloudera Data Science Workbench 訳ï¼æè³ ãããã°ãã¼ã¿ãã®å°é ã«ãããæ©æ¢°å¦ç¿ã¯ãã£ã¨ç°¡åã«ãªãã¾ãããå°éã®ãã¼ã¿ã ãã観å¯ããå¾ã«æ°ãããã¼ã¿ãä¸è¬åãããçµ±è¨çæ¨å®ã®è² æ ãå¤§å¹ ã«è»½æ¸ãããããã§ããå ¸åçãªæ©æ¢°å¦ç¿ã¿ã¹ã¯ã®ã´ã¼ã«ã¯ã観測ãã¼ã¿ã説æããå¤åè¦å ãåé¢ããããã«ç¹å¾´ãè¨è¨ãããã¨ã§ãã ããããå¤ãã®å®ä¸çã®äººå·¥ç¥è½ã¢ããªã±ã¼ã·ã§ã³ã®é£ããã®ä¸»ãªåå ã¯ãå¤åè¦å ã®å¤ãã観å¯ã§ãããã¹ã¦ã®ãã¼ã¿ã«å½±é¿ãä¸ãããã¨ã§ãã ãã£ã¼ãã©ã¼ãã³ã°ã¯ãããåç´ãªè¡¨ç¾ãå°å ¥ãããã¨ã«ãã£ã¦ã表ç¾å¦ç¿ãéãã¦ãã®ä¸å¿çãªåé¡ã解決ãã¾ãã ä¼æ¥ãç 究è ã¯ãç¾å¨ããã³å°æ¥ã®ãã¯ããã¸ã¼ã®é²åã«å½±é¿ãåã¼ãããã«ãã¾ãã¾ãå¤ãã®ãã¼ã¿ãåæãã¦
Monitoring Spark Applications Tzach Zohar @ Kenshoo, March/2016 The document discusses monitoring Spark applications. It covers using the Spark UI to monitor jobs, stages and tasks; using the Spark REST API to programmatically access monitoring data; configuring Spark metric sinks like Graphite to export internal Spark metrics; and creating applicative metrics to monitor your own application metri
- Apache Spark is an open-source cluster computing framework for large-scale data processing. It was originally developed at the University of California, Berkeley in 2009 and is used for distributed tasks like data mining, streaming and machine learning. - Spark utilizes in-memory computing to optimize performance. It keeps data in memory across tasks to allow for faster analytics compared to dis
Spark à Keras à Dockerã§ãã£ã¼ãã©ã¼ãã³ã°ãã¹ã±ã¼ã©ãã«ã«ãã¦ã¿ã2 以åãDist-kerasãDockerã«è¼ãã¦ã¹ã±ã¼ã©ãã«ãªãã£ã¼ãã©ã¼ãã³ã°ãä½ã£ã¦ã¿ã¾ããã http://qiita.com/cvusk/items/3e6c3bade8c0e1c0d9bf å½æã®åçç¹ã¯ããã©ã¼ãã³ã¹ãåºãªãã£ããã¨ã§ãããããè¦ç´ããããã©ã¡ã¼ã¿ã®è¨å®ãééã£ã¦ããããã§ãã ããã§åçãã¦ãããããã試ãã¦ã¿ã¾ããã ååã¾ã§ã®ãããã Dist-Kerasèªä½ã®èª¬æã¯ä»¥åã®æ稿ããåç §ããã ãããã®ã§ãããè¦ã¯Sparkã¯ã©ã¹ã¿ã¼ä¸ã§åä½ããKerasã§ãã ç§ã¯ãããDockerã¤ã¡ã¼ã¸ã«ãã¦ãã¹ã±ã¼ã«ã¢ã¦ããç°¡åã«ã§ããããã«ãã¦ã¿ã¾ããã ãªããDockerfileã¯GitHubã§å ¬éãã¦ãã¾ãã https://github.com/shibuiwillia
Elasticsearchã«ãApache Sparkåãã®ã©ã¤ãã©ãªããããã¨ã¯ç¥ã£ã¦ããã®ã§ãããé·ããæãã¤ãã¦ããªãã¾ã¾ã ã£ãã®ã§ã1度試ãã¦ã¿ããã¨ã«ãã¾ããã Apache Spark support | Elasticsearch for Apache Hadoop [2.3] | Elastic ãã¡ãã使ããã¨ã§ãApache Sparkãæä¾ããAPIãElasticsearchã§ä½¿ããã¨ãã§ããããã«ãªãã¿ããã§ãããå é¨çã«ã¯ãelasticsearch-hadoopã«ä¾åãã¦ãã模æ§ã æ¥æ¬èªè¨äºãããããã§ãã 楽ããå¯è¦å ï¼ elasticsearchã¨Spark Streamingã®åºä¼ã | NTTãã¼ã¿å 端æè¡æ ªå¼ä¼ç¤¾ ã§ãä½ããããã§ãããã¾ãâ¦Spark Streamingã¨Twitterã§ããããä»åã¯ã以ä¸ã®ãã¼ãã§ãã£ã¦ã¿ããã¨ã«ãã¾ããã
ã¯ããã« ååã¯Spark Streamingã®æ¦è¦ã¨æ¤è¨¼ã·ããªãªãããã³æ§ç¯ããã·ã¹ãã ã®æ¦è¦ã解説ãã¾ãããä»åã¯ã·ã¹ãã ã®è©³ç´°æ§æã¨æ¤è¨¼ã®é²ãæ¹ãããã³åæè¨å®ã«ãããæ§è½æ¸¬å®çµæã«ã¤ãã¦è§£èª¬ãã¾ãã ãã®æ¤è¨¼ã§ã¯ã¡ãã»ã¼ã¸ãã¥ã¼ã®Kafkaãã¹ããªã¼ã ãã¼ã¿å¦çã®Spark Streamingãæ¤ç´¢ã¨ã³ã¸ã³ã®Elasticsearchãçµã¿åããããªã¢ã«ã¿ã¤ã ã®ã»ã³ãµãã¼ã¿å¦çã·ã¹ãã ãæ§ç¯ãã¦ãã¾ããä»åã¯Kafkaã¨Elasticsearchã®è©³ç´°ãªã¢ã¼ããã¯ãã£ãKafkaã¨Sparkã®æ¥ç¶æã®æ³¨æç¹ã解説ãã¾ãã ã·ã¹ãã ã®è©³ç´°æ§æ ãã·ã³æ§æã¨ãã·ã³ã¹ãã㯠è©ä¾¡ã«åãããã·ã³ã®åææ§æãå³1ã«ç¤ºãã¾ããæ¬ã·ã¹ãã ã¯ä»¥ä¸ã®ãã¼ãããæ§æããã¾ãã ã»ã³ãµãã¼ã¿ãåéãã¦Kafkaã«éä¿¡ããåéã»é ä¿¡ãã¼ã Kafkaã¯ã©ã¹ã¿ãæ§æãã¦ã¡ãã»ã¼ã¸ã®åã渡ããè¡ããã¥ã¼ã¨ãã¦
ã¯ããã« ååã¯ãSpark 2.0ã®ä¸»ãªå¤æ´ç¹ã¨ãã¦Spark 1.6ãããæ§è½ãåä¸ããã¢ããªã±ã¼ã·ã§ã³ã®å®è£ ã容æã«ãªã£ããã¨ã解説ãã¾ãããã¾ãããã®æ§è½æ¤è¨¼ã®ã·ããªãªã¨ãã¦ãé»åæ¶è²»éãã¼ã¿ãéè¨ãå¯è¦åããã±ã¼ã¹ãæ³å®ãããã¨ã解説ãã¾ãããä»åã¯ãã·ããªãªã«åºã¥ããæ¤è¨¼ãè¡ãããã®ç°å¢ï¼ã·ã¹ãã æ§æããã©ã¡ã¼ã¿ï¼ã¨ãã®æ¤è¨¼çµæã解説ãã¾ãã ã·ã¹ãã æ§æ ãã¼ã¿åæã·ã¹ãã ã®æ¦è¦ ãã¼ã¿åæã·ã¹ãã ã¯ãå³1ã®ããã«ç®¡çç»é¢ã¨ãã¼ã¿åæã¢ããªã±ã¼ã·ã§ã³ããã¼ã¿å¦çåºç¤ã®3ã¤ããæãã¾ããè¨åä¼ç»æ å½è ã¯ç®¡çç»é¢ãä»ãã¦ããªã«ãã¦ã³åæãè¡ãã¾ããäºããã¼ã¿åæã¢ããªã±ã¼ã·ã§ã³ã§è¨åã®è² è·ãéè¨ãããã®æ¼ç®å¦çãå®è¡ããã®ããã¼ã¿å¦çåºç¤ã§ããæ¬é£è¼ã§åãä¸ãããã¼ã¿å¦çåºç¤ã«ã¯Hadoopããã³Sparkãå°å ¥ãã¦ãã¾ãã ãã¼ãã¦ã§ã¢æ§æ ãã¼ã¿å¦çåºç¤ã¯ä»®æ³ãµã¼ã3å°ãç©ç
The document discusses Spark internals and provides an overview of key components such as the Spark code base size and growth over time, core developers, Scala basics used in Spark, RDDs, tasks, caching/block management, and schedulers for running Spark on clusters including Mesos and YARN. It also includes tips for using IntelliJ IDEA to work with Spark's Scala code base.Read less
ã©ããï¼å®ã¯ä»å¹´ããéçºãã¼ã ã«joinãã¦ããä¸å·ã§ãï¼å¯æãç¬ã®åçããªãã£ãã®ã§ï¼å¯æããã¹ã³ããã®ç»åãè²¼ã£ã¦ããã¾ãï¼ æè¿MapReduceã¨ããã®å®è£ ã§ããHadoopã¨ããããèãããã«ãªãã¾ããï¼ããã¯ã¤ã¾ãï¼ããã ã大éã®ãã¼ã¿ããªãã¨ãå¦çãããã¨ããè¦æãããããã ã¨æãã¾ãï¼ãããå½ããåã§ããï¼MapReduceã¯éã®å¼¾ä¸¸ã§ã¯ããã¾ããï¼ ã¨ãããã¨ã§ï¼æè¿æ°ã«ãªã£ã¦ããMapReduceã¨ã¯éã£ãã¢ããã¼ããåã£ã¦ããåæ£å¦çåºç¤ã«ã¤ãã¦ï¼ç¤¾å ã®TechTalkã§è©±ããå 容ãç°¡åã«ã¾ã¨ãã¦ç´¹ä»ãããã¨æãã¾ãï¼ Bulk Sychronous Parallel ãã®ã¢ã«ã´ãªãºã èªä½ã¯1990å¹´ã«èªçãããã®ã§ãï¼é·ãã®ã§BSPã¨æ¸ãã¾ãï¼ãã¦ï¼ã°ã©ãããæççµè·¯ãæ±ããæï¼MapReduceã¯ä½¿ããã§ããããï¼ãã®ãããªè«æãåºããããã§ãããåºæ¥ãªããã¨ã¯ã
ä»æãç¡äºãSpark project åå¼·ä¼ #03 ãçµãããã¨ãåºæ¥ã¾ãããä»å 100 ååå ã¨ãããã¨ã§ãããæ¬å½ã«è²ã ã¹ãã¼ã¯ãã¦ãããããªæ°ããã¾ããæ¥æãã¹ãã¼ã¯ï¼åç¥ã¯ å ¬å¼ããã° ããã§ãã¯ãã¦ä¸ãããã 以ä¸ãåã®çºè¡¨è³æã§ãã Spark project åå¼·ä¼ #03 Keynote (è¿æ³å ±å)http://www.be-interactive.org/works/20080930/keynote.pdf ãã«ããã¬ã¤ Flash ã²ã¼ã ã®ã¤ããããhttp://www.be-interactive.org/works/20080930/be-lt02-multiplay.pdf ããã¡ãªã¿ã«ãã®åº¦ãäºåæ³ã®èªçæ¥ãè¿ãã¾ãã¦ãåå¼·ä¼ã§ã (ããã¾ãã) ã沢山ã®æ¹ã«ç¥ã£ã¦é ããæ¬å½ã«ãããã¨ããããã¾ããã20 代ãä¸åº¦ã®é£¯ãã ActionScrip
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}