ãMicrosoftãArmãã¼ã¹ã®ç¬èªããã»ããµãéçºãå ±éãèããï¼Windowsããã³ãã©ã¤ã³ï¼2/2 ãã¼ã¸ï¼ ãªãªã¸ãã«Armãµã¼ãã¸ã®é ãArmããã¼ã¿ã»ã³ã¿ã¼ã§æ´»ç¨ãã¨ããæèã§ããã°ãAWSã®ãGravitonããç¥ããã¦ããããªãªã¸ãã«ã®Armããã¼ã¹ã«ãããGravitonãããã»ããµãç¨ããEC2ã®ã¤ã³ã¹ã¿ã³ã¹ã®æä¾ã¯2018å¹´11æã«éå§ãããç¿2019å¹´12æã®re:Inventã§ã¯ç¬èªéçºã®å¾ç¶ããã»ããµãGraviton2ããçºè¡¨ããã2020å¹´ããã¤ã³ã¹ã¿ã³ã¹ã®æä¾ãéå§ããã¦ããã Graviton2ã§æ³¨ç®ãã¹ããªã®ã¯ãâå®ä¾¡ãªçé»åããã»ããµâã®ãããªä½ç½®ä»ãã§ã¯ãªããé常ã«é«æ§è½ãªã¤ã³ã¹ã¿ã³ã¹ã®æä¾ãç®çã¨ãã¦ãããã¨ãæãããããä¸ä¾ãAWS Blogã§ç´¹ä»ããã¦ããããæ±ç¨ï¼ã¯ãããï¼ã¤ã³ã¹ã¿ã³ã¹ã¨ãã¦ã¯Intel Xeonããã»ããµãå©ç¨ããM
Comparing the Graviton2 m6g instances against the AMD m5a and Intel m5n instances, weâre seeing a few differences in the hardware capabilities that power the VMs. Again, the most notorious difference is the fact that the Graviton2 comes with physical core counts matching the deployed vCPU number, whilst the competition counts SMT logical cores as vCPUs as well. Other aspects when talking about hig
Nvidiaã400åãã«ã®ARM社買åãçºè¡¨ãããã¨ã¯ãåå°ä½å¸å ´ã«è¡æãä¸ããããç¾å¨ã®ARM社ã®ã©ã¤ã»ã³ã·ã¼ãçå¤ãããã競åãããããããã¨ãªãã両社ãã©ã®ããã«ãã¼ããã©ãªãªãçµ±åããã®ããç¹ã«CPUã®æ§ç¯ã«é¢ãã¦ã¯å¤ãã®çåãæ®ã£ã¦ããã Nvidiaãç¬èªã®CPUãéçºãããã¨ã¯ãªãã代ããã«ARMã®ç®¡çä¸ã«ããNvidiaã®GPUãCUDAãMellanoxç±æ¥ã®ãããã¯ã¼ãã³ã°ã»ã¹ã¿ãã¯ã¨é£æºããã¦æ´»ç¨ãããã¨ã§ãããå¥å ¨ãªARMãµã¼ãã»ã¨ã³ã·ã¹ãã ãè²æããã®ã§ã¯ãªããã¨ã®æ¶æ¸¬ãå¯ãããã¦ããã Tom's Hardwareã«ããã¨ã14æ¥ã®ããªã¼ãã£ã³ã°ã§ã¯ãTheNextPlatformã®Timothy Prickett Morganããã¸ã§ã³ã»ã¹ã³ã»ãã¡ã³ã«ãå®éã«Neoverseã®ãããªãã®ãå ã«å®è£ ãã¦ãNvidiaãã©ã³ãã®CPUãä½ã£ã¦ãã¼ã¿ã»ã³ã¿ã¼ã«æå ¥
ç±³å½ã®åå°ä½ã¡ã¼ã«ã¼ãã¨ãããã£ã¢ï¼Nvidiaï¼ã¯ä»æ13æ¥ãã¹ããç¨CPUã®åºæ¬è¨è¨ã§ä¸çã«ç¬å çãªå°ä½ãå ããè±ã¢ã¼ã ï¼ARMï¼ãã½ãããã³ã¯ã°ã«ã¼ãããè²·åãããã¨ã§åæãããè²·åé¡ã¯ç´400åãã«ï¼4å å以ä¸ï¼ã§ããã®ä¸åã¨ãã¦æ¸¡ãããæ ªå¼ã«ãã£ã¦ã½ãããã³ã¯ã¯ã¨ãããã£ã¢ã®å¤§æ ªä¸»ã¨ãªãã ãã ãè²·åæç«ã¯ç±³ä¸ãªã©åå½è¦å¶å½å±ã®èªå¯å¾ ã¡ã ããä»®ã«ã´ã¼ãµã¤ã³ãåºãã°ã¨ãããã£ã¢ã¯ä»å¾ãä¸çã®ITæ¥çã§GAFAã«å¹æµããã»ã©ã大ããªåå¨ã¨ãªã£ã¦ãããã¨ãäºæ³ãããã ã¹ããã®9å²ä»¥ä¸ãæ¡ç¨ ã¨ãããã£ã¢ãã¢ã¼ã ããã¹ãããããã²ã¼ã æ©ãã®ãããªã³ã³ã·ã¥ã¼ã製åã§ã¯ãªãããããã«å èãããåå°ä½é¨åã®ã¡ã¼ã«ã¼ã§ããã ãã«ãç§ãã¡ã«ã¯æ®æ®µãã¾ããªãã¿ã®ãªãä¼æ¥ãããããªããããå½¼ãã¯ä¸çã®ITæ¥çã«é ç¶ããå½±é¿åãæãã¦ããã 両社ã¯å½¹å²åæ ã確ç«ãããè¿å¹´ã®åå°ä½æ¥çã«ããã¦ã製åã®è£½
1300åå以ä¸*ã®ãããã1000社ãè¶ ãããã¼ããã¼ãä¸ç人å£ã®70%ãè¶ ããã¦ã¼ã¶ã¼ãArm®ã®ãã¯ããã¸ãæ´»ç¨ãã¦ããããã¡ãããæ°è£½åã®çºè¡¨ãçã¾ããã¨ãç¥ããã2018å¹´ãããã¤ã¨ã³ãåãã®CPUã§ããArm Cortex®-A76ããçµã¿è¾¼ã¿åãã®ã»ãã¥ã¢ãªCPUã§ããArm Cortex-M35Pããªãªã¼ã¹ãArmã¯ãä»ãã¹ã¦ã®ã¨ã³ã¸ãã¢ã注ç®ãã巨大ä¼æ¥ã ãããããå§åçãªã·ã§ã¢ã¨æè¡åãèªãArmãã人工ç¥è½ï¼AIï¼ãæ©æ¢°å¦ç¿ï¼MLï¼ã¨ããå¸å ´ã®å¤é©ã«å¯¾ãã¦ãä½ãèããã©ã®ãããªæ´»åããã¦ããã®ããArmã®èããæªæ¥ã®ã«ã¿ãã«è¿«ã£ã¦ã¿ãã *ã½ãããã³ã¯ã°ã«ã¼ã社çºè¡¨ 2019å¹´3ææ 第3ååæ Armãã¼ãã·ã§ã¼ã¹ã©ã¤ãè³æãã éååçï¼å·¦ããï¼ ã¢ã¼ã æ ªå¼ä¼ç¤¾ãå¿ç¨æè¡é¨ããã£ã¼ã«ãã¢ããªã±ã¼ã·ã§ã³ã¨ã³ã¸ãã¢ãããã¢ã¹ ã¢ã³ãã¼ã½ã³ æ° ã¢ã¼ã æ ªå¼ä¼ç¤¾ãã»ã¼ã«ã¹
ABEJA ã® Platform ã¨ã³ã¸ãã¢ã®å°ç¬ åã§ãã ABEJA Platform 㯠Cloud ç°å¢ã®ã¿ãªãã Edge ç°å¢ã§ãæ¨è«æ©è½ãæä¾ãã¦ãã¾ãããæ£å¼ã«ãµãã¼ããã¦ãã Edge device ã¨ã㦠NVIDIA Jetson ãããã¾ãã ABEJA Platform ã¯ãã¦ã¼ã¶ã¼ã³ã¼ãã®å®è¡ã Docker ã³ã³ããä¸ã§è¡ããã¨ã§ãCloud ã§ã Edge device ä¸ã§ãåãã½ã¼ã¹ã³ã¼ããå©ç¨ã§ããä»çµã¿ã«ãªã£ã¦ãã¾ãã Jetson ã® CPU ã¢ã¼ããã¯ãã£ã¯ arm64 ãªã®ã§ãå Deep Learning ãã¬ã¼ã ã¯ã¼ã¯ãå«ã Docker ã¤ã¡ã¼ã¸ããarm64 ã¢ã¼ããã¯ãã£ç¨ã®ãã®ãä½æããå¿ è¦ãããã¾ããã æåã®é 㯠Jetson TX2 ä¸ã§ãã«ããè¡ã£ã¦ããã®ã§ãããtensorflow ã pytorch ã¨ãã£ããã¬ã¼ã ã¯ã¼ã¯
End of life notice With the release of Go 1.6 the Go team have made available official ARMv61 binary releases. Thus, this page is now end of life and will no longer be updated. The existing Go 1.4.x and 1.5.x releases will remain for a time to assist people bootstrapping ARM systems. For other arm variants, I recommend cross compiling or building from source: Build from source, http://dave.cheney.
Introduction The Raspberry Pi has captured the imagination of hackers and makers alike. While it certainly wasnât the first ARM development board on the market, its bargin basement price tag and the charitable philosophy of its inventors has sparked a huge interest in this little ARM system. What could be more appropriate for a new generation of programmers than a modern, safe and efficient progra
ã¨ãããã¨ã§ããARMã§å¦ã¶ã¢ã»ã³ããªè¨èªå ¥éãã6æ22æ¥ã«çºå£²ã«ãªãã¾ãã ä¸è¨ã§å 容ã表ãã¨ãCè¨èªã§çµã¿è¾¼ã¿éçºãã¦ãã人åãã®ARMã¢ã»ã³ããªè¨èªå ¥éããè¨ãæ¹ãå¤ããã¨ãããªããªã¨ã¢ã»ã³ããªã³ã¼ããæ¸ããã°è¨ããã¨ãªããã©ãCè¨èªã§ã³ã¼ããæ¸ãã¦ãã¨ãã¦ããã¢ã»ã³ããªè¨èªãã©ããªã¢ãã§ãã©ããªé¢¨ã«æãç«ã£ã¦ããã®ãç¥ã£ã¦ãããããå¾ã§ãã£ã¨å½¹ã«ç«ã¤ããã å 容ã¨ãã¦ã¯ãARMã¢ã¼ããã¯ãã£ã®è©±ãããã¢ã»ã³ããªè¨èªç¹æã®èãæ¹ï¼ã¬ã¸ã¹ã¿ãå½ä»¤ãªã©ï¼ãå½ä»¤è§£èª¬ãCè¨èªã¨ã®é£æºãä¾å¤ã»å²ãè¾¼ã¿ã®è§£èª¬ãªã©ãã¢ã»ã³ããªè¨èªãæ±ãã®ã«å¿ è¦ãªã¨ãããä¸éããã¨ãã£ãæãã§ã ãµã³ãã«ã³ã¼ãã¯ç¹å®ãã¼ãã¦ã§ã¢ï¼è©ä¾¡ãã¼ãï¼ã«ä¾åãããQEMUï¼ARMããã»ããµãã¨ãã¥ã¬ã¼ãããã½ããã¦ã§ã¢ï¼ä¸ã§åä½ãããã¨ãåæã¨ãªã£ã¦ããããããããã¿ã¼ã³ã§ãARMããã»ããµã®è§£èª¬æ¬ã ã¨ä½ãããã®ARMãã
<box green 80% round center>Obeying these guidelines will significantly speed up your code and will perform equally to hand crafted assembler in most cased. Read the Official ARM NEON Optimization Examples to learn the details why this statement holds.</box> Use the restrict keyword for pointers in function signatures: It signals to the compiler that no other pointer inside the function points at
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}