â½¯å· å åå¤å±å¸â½´â¼¤å¦ ⼤å¦é¢ã·ã¹ãã â¾ç¶ç§å¦ç ç©¶ç§ ã°ã©ãã«ããã®çè«ã¨å¿â½¤ ⽬次 å¿â½¤ä¾ã®ç´¹ä»ã»æ´å² ã¨ãã«ã®ã¼æ⼩å å®è£ ä¾ ã°ã©ãã¨ãã®åæ ã°ã©ãã«ããã«ããã¨ãã«ã®ã¼æ⼩å 2å¤ã®å ´å å¤å¤ã®å ´åï¼â¼¤åæ⼩åã§ããå ´åï¼ å¤å¤ã®å ´åï¼è¿ä¼¼ã¢ã«ã´ãªãºã ï¼ ã¾ã¨ã å¿â½¤ä¾ã®ç´¹ä»ã»æ´å² ã°ã©ãã«ãã å¥å s-t mincut ã¨ãã«ã®ã¼æ⼩åãããâ½ æ³ ãã¬ã¼ããªããã¨ãã«ã®ã¼ã¨ãã¦è¡¨ç¾ å¿â½¤åé ç»å復å ã¹ãã¬ãª ã»ã°ã¡ã³ãã¼ã·ã§ã³ åç»å解æ ãã¯ã¹ãã£åæ ãã©ãã¢ã³ã¿ã¼ã¸ã¥ ã¤ã³ã¿ã©ã¯ãã£ãã»ã»ã°ã¡ã³ãã¼ã·ã§ã³ Rother et.al. SIGGRAPH2004 ã¤ã³ã¿ã©ã¯ãã£ãã»ã»ã°ã¡ã³ãã¼ã·ã§ã³ Boykov&Jolly ICCV2001 ã¤ã³ã¿ã©ã¯ãã£ãã»ã»ã°ã¡ã³ãã¼ã·ã§ã³ Wang et.al. SIGGRAPH2005 ãã¯ã¹ãã£åæ Kwatra et.a
è±èªçè¨äºãæ¥æ¬èªã¸æ©æ¢°ç¿»è¨³ãããã¼ã¸ã§ã³ï¼Google翻訳ï¼ã ä¸ãä¸ç¿»è¨³ã®æãããã¨ãã¦æ©æ¢°ç¿»è¨³ãç¨ããå ´åã翻訳è ã¯å¿ ã翻訳å åæãåç §ãã¦æ©æ¢°ç¿»è¨³ã®èª¤ããè¨æ£ããæ£ç¢ºãªç¿»è¨³ã«ããªããã°ãªãã¾ããããããæããã¦ããªãå ´åãè¨äºã¯åé¤ã®æ¹éG-3ã«åºã¥ããåé¤ãããå¯è½æ§ãããã¾ãã ä¿¡é ¼æ§ãä½ãã¾ãã¯ä½å質ãªæç« ã翻訳ããªãã§ãã ãããããå¯è½ãªãã°ãæç« ãä»è¨èªçè¨äºã«ç¤ºãããæç®ã§æ£ãããã©ããã確èªãã¦ãã ããã å±¥æ´ç¶æ¿ãè¡ããããè¦ç´æ¬ã«ç¿»è¨³å ã¨ãªã£ãè¨äºã®ãã¼ã¸åã»çã«ã¤ãã¦è¨è¿°ããå¿ è¦ãããã¾ããè¨è¿°æ¹æ³ã«ã¤ãã¦ã¯ãWikipedia:翻訳ã®ã¬ã¤ãã©ã¤ã³#è¦ç´æ¬ã¸ã®è¨å ¥ãåç §ãã ããã 翻訳å¾ã{{翻訳åç¥|en|Wavelet|â¦}}ããã¼ãã«è¿½å ãããã¨ãã§ãã¾ãã Wikipedia:翻訳ã®ã¬ã¤ãã©ã¤ã³ã«ããã詳細ãªç¿»è¨³ã®æé ã»æéã«ã¤ãã¦ã®èª¬æãããã¾ãã ã¦
äºæ¬¡å DCTã¨DFTã¨ã®æ¯è¼ãå·¦ã¯ã¹ãã¯ãã«ãå³ã¯ãã¹ãã°ã©ã ãä½å¨æ³¢åã§ã®ç¸éã示ããããã¹ãã¯ãã«ã¯ 1/4 ã ã示ãã¦ãããDCTã§ã¯ããã¯ã¼ã®ã»ã¨ãã©ãä½å¨æ³¢é åã«éä¸ãã¦ãããã¨ããããã é¢æ£ã³ãµã¤ã³å¤æï¼ãããã³ãµã¤ã³ã¸ããããè±: discrete cosine transformãDCTï¼ã¯ãé¢æ£ä¿¡å·ãå¨æ³¢æ°é åã¸å¤æããæ¹æ³ã®ä¸ã¤ã§ããã DCTã¯ãæéæ°åããä½å¼¦é¢æ°æ°å cos(nk) ãåºåºã¨ããä¸æ¬¡çµåï¼ã¤ã¾ããé©åãªå¨æ³¢æ°ã¨æ¯å¹ ã®ã³ãµã¤ã³ã«ã¼ãã®åï¼ã®ä¿æ°ã«å¤æãããä½å¼¦é¢æ°ã¯å®æ°ã«å¯¾ãã¦ã¯å®æ°ãè¿ãã®ã§ãå®æ°åã«å¯¾ãã¦ã¯DCTä¿æ°ãå®æ°åã¨ãªãã ããã¯ãé¢æ£ãã¼ãªã¨å¤æ (DFT: discrete Fourier transform) ããå®æ°ã«å¯¾ãã¦ãè¤ç´ æ°ãè¿ã exp(ink) ã使ããããå®æ°åã«å¯¾ãã¦ãè¤ç´ æ°åã¨ãªãã®ã¨å¤§ããªéãã§ããããªãã
ä¸çªã®éãã¯ãçæã¢ãã«ãèå¥ã¢ãã«ããã¨ãããã¨ãããããã Markov Random Fields (MRF) ã¯çæã¢ãã« Conditional Random Fields (CRF) ã¯èå¥ã¢ãã« ã§ãã What is exactly the difference between MRF and CRF ãããè¦ãã¨å²ã¨ãã£ããããã ãã ãå°ãã¹ã ã¼ãºã«ç´å¾ã§ããªããã¨ãããã¾ãã¦â¦ããã¯ãMRFãCRFãã°ã©ãã£ã«ã«ã¢ãã«ã§æ¸ãã¨ç¡åã°ã©ãã¨ãªããã¨ãèå¥ã¢ãã«ã¯ç¡åã°ã©ãã§çæã¢ãã«ã¯æåã°ã©ããªãããâ¦ï¼ã¨æã£ã¦ãã¾ã人ãããããããªããã¨æãï¼ããªãã£ããããããªããï¼ã ã°ã©ãã£ã«ã«ã¢ãã«ã¨ãã¦ã®è¡¨ç¾ ä¸è¬ã«ãçæã¢ãã«ã¯æåã°ã©ãã®å½¢ã§è¨è¿°ãããèå¥ã¢ãã«ã¯ç¡åã°ã©ãã¨ãã¦è¨è¿°ããããä¾ãã°ãé ããã«ã³ãã¢ãã« (HMM) ã¯æåã°ã©ãã§ãæ¡ä»¶ä»ã確çå ´ (CR
Video of spiral being propagated by level sets (curvature flow) in 2D. Left image shows zero-level solution. Right image shows the level-set scalar field. The Level-set method (LSM) is a conceptual framework for using level sets as a tool for numerical analysis of surfaces and shapes. LSM can perform numerical computations involving curves and surfaces on a fixed Cartesian grid without having to p
ãã®è¨äºã«ã¯åèæç®ãå¤é¨ãªã³ã¯ã®ä¸è¦§ãå«ã¾ãã¦ãã¾ãããè注ã«ããåç §ãä¸ååã§ãããããæ å ±æºãä¾ç¶ä¸æ確ã§ãã é©åãªä½ç½®ã«è注ã追å ãã¦ãè¨äºã®ä¿¡é ¼æ§åä¸ã«ãååãã ãããï¼2023å¹´10æï¼ éç·å½¢è¨ç»æ³ï¼ã²ããããããããã»ããè±: nonlinear programming, NLPï¼ã¯ãå¶ç´æ¡ä»¶ç¾¤ã¨æªç¥ã®å®å¤æ°ç¾¤ããæãä¸é£ã®çå¼ã¨ä¸çå¼ã§ãå¶ç´æ¡ä»¶ã¾ãã¯ç®çé¢æ°ã®ä¸é¨ãéç·å½¢ãªãã®ã«ã¤ãã¦ãç®çé¢æ°ãæå°åã¾ãã¯æ大åãããããªè§£ãæ±ããããã»ã¹ã§ãããã¾ããéç·å½¢è¨ç»æ³ã®å¯¾è±¡ã¨ãªãåé¡ãéç·å½¢è¨ç»åé¡ã¨å¼ã¶ã ç®çé¢æ° f ãç·å½¢ã§ãå¶ç´ç©ºéãããªãã¼ãã®å ´åããã®åé¡ã¯ç·å½¢è¨ç»åé¡ã§ãããç·å½¢è¨ç»æ³ã§è§£ããã¨ãã§ããã ç®çé¢æ°ãå¹é¢æ°ï¼æ大ååé¡ï¼ã¾ãã¯å¸é¢æ°ï¼æå°åï¼ã§å¶ç´éåãå¸éåã®å ´åããã®åé¡ã¯å¸è¨ç»åé¡ã¨å¼ã°ããå¸æé©åã®ææ³ãç¨ãããã¨ãã§ããã éå¸
sklearn.mixture ã¯ã¬ã¦ã¹æ··ååå¸ã¢ãã«ã®å¦ç¿, ãµã³ããªã³ã°, è©ä¾¡ããã¼ã¿ããå¯è½ã«ããããã±ã¼ã¸ã§ã. ã³ã³ãã¼ãã³ãã®é©åãªæ°ã®æ¢ç´¢ãæå©ãããæ©è½ãæä¾ãã¦ãã¾ã. ã¬ã¦ã¹æ··åã¢ãã«ã¯, ãã¹ã¦ã®ãã¼ã¿ãã¤ã³ããæéæ°ã®æªç¥ã®ãã¿ã¡ã¼ã¿ãæã¤ã¬ã¦ã¹åå¸ã®æ··åããçã¿åºããããã®ã ã¨éç¨ãã確çã¢ãã«ã§ã. æ··åã¢ãã«ã K-means ã¯ã©ã¹ã¿ãªã³ã°ããã¼ã¿ã®å ±åæ£æ§é ã ãã§ãªã, æ½å¨ã¬ã¦ã¹åå¸ã®ä¸å¿ã«ã¤ãã¦ã®æ å ±ãçµã¿è¾¼ã¿ä¸è¬åãããã®ã§ããã¨èãããã¨ãå¯è½ã§ã. 使ç¨ä¾Â¶ ã¨ãããã GMM ã®å¦ç¿ãè¡ãä¾ã以ä¸ã«ç¤ºãã¾ãï¼ ããã§ã¯ãã¼ã¿ã»ãã iris ã®2次å åã®ãã¼ã¿ãæ師ãªãã§å¦ç¿ãï¼ æ··åæ£è¦åå¸ã®å¯åº¦ãè¨ç®ãï¼å¯è¦åããã¹ã¯ãªãããä½æãã¦ãã¾ãï¼ åºå¶ 以ä¸ã«å³ã®è¦æ¹ã解説ãã¾ãï¼ ã¾ãï¼X軸ï¼Y軸ã§ããï¼ããã¯å¦ç¿ãã¼ã¿ã®ä¸æ¬¡å ç®ï¼äºæ¬¡å
ãç§ã®ãããã§ãã®é¨ç½²ã¯æãç«ã£ã¦ããã ï¼ããæ®éããããªâä»äºé å¼µã£ã¦ãã¢ãã¼ã«âãããã¨è·å ´ã§å«ããããå¤ãã®ã¨ã³ã¸ãã¢ã¯ã人äºè©ä¾¡ã®æãªãã¨ããããæ®æ®µããææãèªæ ¢ãããªãã¦æ¥ãããããã¨æãã¦ããã ããã ããããããããâæ®éã®æè¦âã§ä»äºããã¦ã¯ãããªãè·å ´ããããã»ãã¥ãªãã£æ å½ãã¼ã ã ãã»ãã¥ãªãã£æ å½ãã¼ã ã¯ã対çããã¾ãããã»ã©ãè©ä¾¡ãä¸ãããã¨ããå ¨ãå ±ãããªãè·å ´ç°å¢ã«ããã ãã»ãã¥ãªãã£ã¯ä¼æ¥ã«ã¨ã£ã¦ã®ã¤ã³ãã©ã ããçæ´»ã¤ã³ãã©ã®æ°´éãé»æ°ã¨éã£ã¦æ触ãæãä¼´ããã®ã§ã¯ãªããä½ãèµ·ãããªãç¶æ³ãç¶ãã¨ããä½ããã¦ããªããã¨å¨å²ããè¦ããã¦ãã¾ãããã¼ã ã®äººæ°ãäºç®ãæ¸ãããããããããæ¥æ¬ãã¤ã¯ãã½ããã®èµæ¬éä¸ãã¤ã¯ãã½ãããã¯ããã¸ã¼ã»ã³ã¿ã¼ã»ãã¥ãªãã£ã¢ã¼ããã¯ãã¯ãã³ã³ãµã«ãã£ã³ã°ãéãã¦è¦ã¦ããå¤ãã®ã»ãã¥ãªãã£ã®ç¾å ´ã®å®æ ããã話ãã ãã¡ãããã»
ã¢ã¸ã£ã¤ã«éçºã«åãçµããã¼ã åãã®ã³ã¼ãã³ã°ããæè¡é¡§åãèªå®ã¹ã¯ã©ã ãã¹ã¿ã¼ç ä¿®ãªã©ã®å種ãã¬ã¼ãã³ã°ãæä¾ãã¦ãã¾ãããã²ãæ°è»½ã«ãç¸è«ãã ããï¼ååç¸è«ç¡æï¼ äººææµåæ§ã®é«ã¾ããæ¥ã æãã¦ããã¿ãªããããã«ã¡ã¯ã æè¿ããããªä¼ç¤¾ã«ãå¼ã°ããã¦ãã¦ããã®ä¸ã§ã¨ã³ã¸ãã¢ã®æ¡ç¨ã®è©±ã«ãªããã¨ãã¨ã¦ãå¤ãã®ã§ã¡ãã£ã¨æ´çãã¦ããã¾ãã ãã¤ã³ãâ¼ãé¢ç½ããããã¯ãããªãããä»äºå 容ã¯é¢ç½ãã¨ã¯æããªããããã給ä¸ã¯æããªãããä»äºç°å¢ã«ãèªç±ã¯ãªããã©ãè¯ã人éããããã ãã©ãã©ããããããã§ããï¼ãæªãã諦ãããè¯ã人ã¯å½ç¶ã®ãã¨ãªããè¤æ°ã®ä¼ç¤¾ãèå³ããã¤ãã¨ã«ãªãããåãå ´æãèªåã§é¸æãã¾ããPros/Consãè¦æ¥µãã¦é¸ã¶ãã¨ã«ãªãã®ã§ãProsããªãå ´æã§åãçç±ãããã¾ããâ¦ã ã¨ãã¾ãã«å·ããã®ã§ãããããªãã次ã«è»¢è·ããã¨ãã¦ãããã§ãä»ã®ä¼ç¤¾ã«å ¥ãã®ã§ããã°ããªããæ¹
STEP1è·åçµæ´æ¸ã¨ã¯ï¼ãï½å±¥æ´æ¸ã¨ã®éããç¥ããï¼ ãè·åçµæ´æ¸ãã¨ã¯ãä»äºã«é¢ããçµé¨å 容ãã¹ãã«ãã¾ã¨ããæ¸é¡ã®ãã¨ã§ãããå±¥æ´æ¸ãã¯æ°åãä½æãå¦æ´ãªã©å¿åè ã®ãããã£ã¼ã«ãè¨è¼ããæ¸é¡ã®ãã¨ã§ãã»ã¼ãã©ã¼ãããã決ã¾ã£ã¦ãã¾ãã è·åçµæ´æ¸ã¯èªèº«ã®çµæ´ã«åããã¦ãã©ã¼ããããé¸æãããã¨ãã§ãã表ç¾ã®ä»æ¹ã«ãèªç±åº¦ãããã¾ããå±¥æ´æ¸ã«è¨è¼ããªã詳ããè·æ´ãã¢ãã¼ã«ããããã®ãã¼ã«ãè·åçµæ´æ¸ãä»ã¾ã§ã®èªèº«ã®çµé¨ãå¿åä¼æ¥ã§ã©ã®ããã«çãããããæ¡ç¨æ å½è ã«ä¼ããããã®æ¸é¡ã§ããA4ç¨ç´1ï½2æç¨åº¦ã«ã¾ã¨ããã®ãä¸è¬çã§ãã æ¡ç¨æ å½è ã¯è·åçµæ´æ¸ã§ãåéä¼æ¥ãæ±ããå®åè½åãæºããã¦ãããï¼ãããã§ãã¯ãã¦ãã¾ããè·åçµæ´æ¸ã¯ãæ¸é¡é¸èã®æã ãã§ãªãé¢æ¥ã®æã«ãæ¡ç¨æ å½è ã®æå ã§åç §ããã¾ããå¿åããé¢æ¥ã¾ã§ä½¿ç¨ãããé常ã«éè¦ãªæ¸é¡ã¨èªèãã¦ãã ããã è·åçµæ´æ¸ã§è¦ãããã
ããã¨æ å ±ãããã¯ããã¼ã¯ã¼ã¯ã®æ±äººãæ¤ç´¢ã§ãããµã¤ãã§ããåçå´åçãæä¾ãã¦ããããã¼ã¯ã¼ã¯ã¤ã³ã¿ã¼ããããµã¼ãã¹ã«æ²è¼ããã¦ããæ±äººããããã¯ã¢ãããã¦æ²è¼ãã¦ãã¾ããå°åå¥ãä¼æ¥å¥ãè·ç¨®å¥ãæ¥ç¨®å¥ãªã©ã¯ã³ã¯ãªãã¯ã§æ§ã ãªåãå£ã§ã®æ±äººæ¤ç´¢ãå¯è½ã§ããã¾ããããã¼ã¯ã¼ã¯ã¤ã³ã¿ã¼ããããµã¼ãã¹ã§ã¯æ²è¼çµäºã¨ãªã£ã¦ãã¾ã£ãéå»ã®æ±äººãæ¤ç´¢ã§ãã¾ããå ¬å ±è·æ¥å®å®æï¼è·å®ï¼ã®æ±äººæ¤ç´¢ã«ã¯ç°¡åã»ä¾¿å©ãªãããã¨æ å ±ããããããå©ç¨ãã ããã
ä»äºãããªãååã¨å¸ã並ã¹ãçµé¨ã¯ã誰ã«ãä¸åº¦ã¯ããã®ã§ã¯ãªãã§ããããããããªååã¨ã¯ä¸ç·ã«åããããªãã§ãããä¸ç·ã®ãã¼ã ã«ãªãã®ãåå¼ãã¦æ¬²ãããã®ã§ãã ä½å®¶ã§ãã大å¦ææã§ãããAdam Grantããã¯ããã®æã®ååã«å¯¾å¦ããã«ã¯ãç¬èªã®ä»äºãä¸ããã¨ããã¨è¨ã£ã¦ãã¾ãããæ ãè ã®ååã«ä»äºã«èå³ãæãããã«ã¯ãèªåãå¿ è¦ã¨ããã¦ããã¨ããæ°ã«ããããã¨ã大äºã ããGrantããã¯Linkedinã§èª¬æãã¦ãã¾ãã 大人æ°ã®ã°ã«ã¼ãã¨ããã®ã¯ãã¿ããªãå調æ§ãæã¡ãè¬èã«åªãã誰ãèã人ãããªãããããã¾ã¨ã¾ããã®ã§ããä»äºãããªã人éãä½ããªãããã«ã¯ãã°ã«ã¼ããå°ããããã®ãç°¡åã§ãããããããã®äººéãå¿ è¦ã¨ããä»äºããããããã大ããªã°ã«ã¼ãã«ãªã£ã¦ãã訳ã§ãããã®ãããªå ´åã確å®ã«ã¡ã³ãã¼ã«ããæ°ãåºãããã«ã¯ãããããã«ç¬èªã®å½¹å²ãä¸ããã®ãä¸çªç°¡åã§ãã å¿çå¦è ã®
è¦ããã§ããå°±è·æ°·æ²³æä¸ä»£ãæ¯ããããã²ããããã親ã®é«é½¢åãå¿èº«ä¸èª¿ã®40ï¼50代â¦å®æ°é£æºã§æ¯æ´å å®
ãµã¨ãã¥ã¼ã¹ãè¦ã¦ããæ¿åºãè¥è ã®å°±å´ã«ãã³å ¥ãããã¨ãã話ãã§ã¦ããã¾ããã æ°ããä»ã®è¥è ã®ä¸ã§ï¼å¹´å¾ã«é¢è·orç¡è·ãªäººã£ã¦ã®ãç´åæ°ããã¨ã®ãã¨ã ä½æ ããè¾ããã®ãã¨ããåãã«å¯¾ããæ¿åºã®åã人ãã¡ã®è©±ãåãããåºãçç±ããå®éã®è·å ´ãçµé¨ããã¤ã³ã¿ã¼ã³ã·ãããæ®åãã¦ãªããããå¦çã大ææèã ãããã¨ããã®ã¯ã¨ã¦ãæ®å¿µã§ãã ç§èªèº«ãã¾ã 社ä¼äººï¼å¹´ç®ã§ãããªããä½åº¦ãè¾ãããã¨æããã¨ãããã¾ããã 大æã¨è¨ãããä¼æ¥ã§åããªãããä¼ç¤¾ãè¾ããããªãã¾ãããã®çç±ã«ã¤ãã¦ã¡ããã£ã¨æ¸ãè½ã¨ãã å ã®è¦ããªããã£ãªã¢ãã¹ ä¼ç¤¾ã«å ¥ãã¨å 輩社å¡ã®æå°ã®ãã¨ãè²ã ã¨ä»äºãè¦ãã¦è¡ããã¨ã«ãªãã¾ãã ä½ããããã¨ããã¨ãå 輩社å¡çµç±ãä¸å¸ã®è¨±å¯ãå¾ã¦ä»äºãé²ãã¾ãããã®ã¨ãã©ããã¦ãä¸å¸ãå¤ãããã¨ããæèããã£ã¦ãã¾ãã ç¹ã«ï¼ï¼ä»£åå¾ã®ããã«ä¸ä»£ããã®è¾ºã管çè·ã«ãããããã¦ã管çè·
ãã®è¨äºã¯æ¤è¨¼å¯è½ãªåèæç®ãåºå ¸ãå ¨ã示ããã¦ããªãããä¸ååã§ãã åºå ¸ã追å ãã¦è¨äºã®ä¿¡é ¼æ§åä¸ã«ãååãã ãããï¼ãã®ãã³ãã¬ã¼ãã®ä½¿ãæ¹ï¼ åºå ¸æ¤ç´¢?: "ãã¯ã¤ãã«ã©ã¼ã¨ã°ã¼ã³ãã·ã§ã³" â ãã¥ã¼ã¹Â · æ¸ç±Â · ã¹ã«ã©ã¼Â · CiNii · J-STAGE · NDL · dlib.jp · ã¸ã£ãã³ãµã¼ã · TWL (2007å¹´5æ) ãã¯ã¤ãã«ã©ã¼ã¨ã°ã¼ã³ãã·ã§ã³ï¼è±: white collar exemptionï¼ãã¾ãã¯é è³å´åè è±æé給å¶åº¦ï¼ãã®ãããã©ãããã ã¤ããããã ãããã©ï¼ã¨ã¯ããã«ã¼ã«ã©ã¼ã®ãããªèä½å´åè ã製é æ¥å¾äºè 以å¤ã®ã¹ã¼ããçã¦ãªãã£ã¹ã§ä»äºããããã¯ã¤ãã«ã©ã¼å´åè ã®ä¸é¨ã«å¯¾ããå´åæ³ä¸ã®è¦å¶ãç·©åã»é©ç¨å é¤ãããã¨ãã¾ãã¯ãã®å¶åº¦ã§ãã[1]ã åå½ã®å´åæ³å¶ã«ããã¦ãå´åæéã®è¦å¶ããªããã¦ãããã¨ãåæã¨ãã¦ããã®è¦å¶ã®é©ç¨ãå é¤ã
ãã½ãã§ã¯æ§ã ãªé¸æè¢ããããªãã« åã£ããã£ãªã¢ãé¸ã¶ãã¨ãã§ãã¾ã POINT ãã£ãªã¢ãã¹ ã¹ãã·ã£ãªã¹ã ã¼ãã©ãªã¹ã ããã¼ã¸ã£ã¼
æ¨å¹´ãæ å ±å¦çæ¨é²æ©æ§ï¼IPAï¼ãéå¬ããITæ¥çã®éé®ã¨ç¾å½¹å¦çã«ããè¨è«ä¼ã§ãå¦çã®æã¤ITæ¥çã¸ã®ããã¬ãã£ãã¤ã¡ã¼ã¸ããæããã«ãããã®ã¯è¨æ¶ã«æ°ããã5æ28æ¥ãIPAãéå¬ããã¤ãã³ããIPAX2008ãã§ãåã³çµå¶è ã¨å¦çã®è¨è«ä¼ãè¡ããããITç£æ¥ãå½éçãªé£èºããããããã«å¦çã«æå¾ ãããã¨ãä»å¹´ã®è¨è«ã®ãã¼ãã å¦çå´ã¯ãæ ¶æ義塾大å¦ãä¹å·å¤§å¦ãåèå·¥æ¥å¤§å¦ãæ±äº¬æ å ±å¤§å¦ãæ±äº¬å·¥ç§å°éå¦æ ¡ããåæ ¡2人ãã¤ãè¨10人ãåºå¸ãä¸æ¹ãç£æ¥ç代表ã¨ãã¦CSKãã¼ã«ãã£ã³ã°ã¹ åç· å½¹ æè³è²ä¸æ°ã¨ãã³ã ãã¥ã¢ 代表åç· å½¹ç¤¾é· å浩ä¸æ°ãè¨è«ãè¡ã£ããã¾ããIPAããã¯çäºé·ã®è¥¿å£æµ©å¸æ°ãåå ãããå¸ä¼ã¯ã¤ã³ãã¬ã¹R&Dã®ç°å£æ½¤æ°ãè¡ã£ãã ããã¸ãã£ããªãã¸ã§ã³ãæ示ãã¦ã ãç£æ¥ãåãããããããã®ããä»äºã®ã¤ã¡ã¼ã¸ãã«ã¤ãã¦å¦çã«è³ªåãããã¨ããããéææãããããèªåã®æé·
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}