2025年のノーベル物理学賞は、マクロな量子トンネル効果に授与されました。
この受賞を予想していた人は多くないかもしれません。
一体これは何でしょうか?なぜ重要なのでしょうか?そして、誰が受賞したのでしょうか?
この賞は、ジョン・クラーク、ミシェル・デヴォレ、そしてジョン・マーティニスに贈られました。
論文は、マクロな量子トンネル効果が実在することを示す結果を提示しました。
量子トンネル効果は、量子粒子が十分なエネルギーを持っていなくても、障壁を通り抜けることができる現象です。
量子特性を持たない場合、粒子は閉じ込められてしまいますが、量子特性を持つことで、障壁を漏れ出ることができるのです。
量子トンネル効果の最もよく知られた応用例は、おそらく電子トンネル顕微鏡でしょう。
これは、電子が顕微鏡の先端にトンネルすることで、物質の表面を原子ごとに探査します。
今年のノーベル賞受賞者3名は、この効果が粒子の大きな集団でも起こり得ることを突き止めました。
「マクロ」と聞くと、家のような大きなものを想像するかもしれませんが違います。
このワイヤー内の電流は何百万もの電子から構成されており、単一の電子レベルと比較すると非常に大規模です。
彼らが示したのは、ワイヤー内の電流の集団的な振る舞いが、文字通りのギャップである障壁をトンネルできるということです。
この現象が起こるには、電子が単一の量子状態として振る舞う必要があるため、ワイヤーは超電導状態でなければなりません。
これは、ワイヤーを絶対零度近くまで冷却する必要があることを意味します。
ノーベル賞受賞論文内の図では、ワイヤーが冷却されるにつれて、量子効果なしでは不可能な振る舞いを電流が示すことを示しています。
この効果の重要性、そしてノーベル賞が授与された理由として、彼らの発見から40年で、量子物理学をマイクロチップの領域にまで移行させたことが挙げられます。
その中で最もよく知られているのが、おそらく量子コンピューティングでしょう。
電流がトンネルできるようになると、オンとオフの両方の状態を同時に持つ電流が可能になり、これが量子ビット(キュービット)を生み出します。
Google、IBM、Amazonなどが使用している超電導回路を用いた量子コンピューターは、1985年の実験とまったく同じ技術を使っているわけではありませんが、そのルーツは1980年代のこのグループの業績にあります。
この効果は、電流を妨害する可能性のある暗黒物質粒子を探す実験にも使われています。
1980年代に彼らが実験を行った当時、量子物理学はほとんど哲学的なものでした。
二つの場所に同時に存在する物体や「不気味な遠隔作用」といった事柄は、具体的なものからあまりにもかけ離れていたからです。
しかし、マクロな量子トンネル効果は、量子物理学を具体的な領域へと移行させた大きな転換点となりました。
今年のノーベル賞について、量子コンピューティングそのものに賞を与えるのではなく、最初の量子コンピューターを可能にした技術に与えられたことは理にかなっています。
一部の理論物理学者は、デヴィッド・ドイチュやピーター・ショアなど、量子コンピューティングに関する理論的な業績が受賞するのではと考えていたため、この結果は少々残念に感じるかもしれません。
こういうの死んでほしい AI作文で賢くなったつもりのバカ
何を今さらわめいている。「AI作文で賢くなったつもりのバカ」だと? 冷徹に事実を見てみろ。 「AI作文」とやらも、結局は道具に過ぎん。道具を使って成果を出す人間と、道具を罵倒...
量子的な本質って何?