ããã«ã¡ã¯ãre:Inventåå ä¸ã®å¤ç°ã§ãã
ä»æ¥ã¯ãAndy Jassyæ°ã«ããKeynoteãè¡ããä¼å ´ã¯å¤§çãä¸ããã§ããããç§ãããããã®ã¢ãããã¼ãã«è奮ãã¾ããï¼
ãã¦ãä»åã¯åæ¥ã«è¡ããããOrchestrating Machine Learning Training for Netflix Recommendationsãã«åå ãã¦ããã®ã§ãã®å
容ãã¬ãã¼ããã¾ãã
ã»ãã·ã§ã³æ¦è¦
æ¬ã»ãã·ã§ã³ã¯ã以ä¸ã®ãããªå 容ã«ãªãã¾ãã
At Netflix, we use machine learning (ML) algorithms extensively to recommend relevant titles to our 100+ million members based on their tastes. Everything on the member home page is an evidence-driven, A/B-tested experience that we roll out backed by ML models. These models are trained using Meson, our workflow orchestration system. Meson distinguishes itself from other workflow engines by handling more sophisticated execution graphs, such as loops and parameterized fan-outs. Meson can schedule Spark jobs, Docker containers, bash scripts, gists of Scala code, and more. Meson also provides a rich visual interface for monitoring active workflows and inspecting execution logs. It has a powerful Scala DSL for authoring workflows as well as the REST API. In this session, we focus on how Meson trains recommendation ML models in production, and how we have re-architected it to scale up for a growing need of broad ETL applications within Netflix. As a driver for this change, we have had to evolve the persistence layer for Meson. We talk about how we migrated from Cassandra to Amazon RDS backed by Amazon Aurora.
Netflix社ã®æ©æ¢°å¦ç¿ãç¨ããã¬ã³ã¡ã³ãã¼ã·ã§ã³ã®æä¾ãèªååã®ä»çµã¿ããã®ã¢ã¼ããã¯ãã£ã®è©±ã«èå³ããããåå ãã¦ãã¾ãã
ã¹ãã¼ã«ã¼ã¨ãã¦æ¬¡ã®æ¹ãç»å£ããã¦ãã¾ããã
- Eugen Cepoi - Senior Software Engineer, Netflix
- Davis Shepherd - Senior Software Engineer, Netflix
- Faisal Siddiqi - Engineering Manager, Personalization Infrastructure, Netflix
ã»ãã·ã§ã³å ã§ã®æ°ã«ãªã£ããããã¯
åç»ã®ã¬ã³ã¡ã³ãã¼ã·ã§ã³ã®ä»çµã¿
ã¾ããNetflixã®æ åã®ã¬ã³ã¡ã³ãã¼ã·ã§ã³ã®ä»çµã¿ã«ã¤ãã¦è©±ãããã¾ããã
ä»çµã¿ã¨ãã¦ã¯ã大æ¬ã®ãã¼ã¿ãåãè¾¼ãã æ©æ¢°å¦ç¿ãã¤ãã©ã¤ã³ã§å¦çãè¡ãã¢ãã«åããã®å¾åç»ã®ã¬ã³ã¡ã³ããåæãããã£ãã·ã¥ã«ããã¦HPã«è¡¨ç¤ºãã¦ããã¨ã®ãã¨ã§ããã
å
·ä½çã«ã©ããªä»çµã¿ãå°å
¥ãã¦ããã...?ãæ°ã«ãªãã¨ããã§ãã
Mesonã«ã¤ãã¦
ã¬ã³ã¡ã³ãã¼ã·ã§ã³ã®ä»çµã¿ã§ä¸å½¹è²·ã£ã¦ããã®ãMesonã¨ããNetflix社ã®ç¬èªãã¼ã«ã§ãã
Mesonã¯æ©æ¢°å¦ç¿ã®ã¯ã¼ã¯ããã¼ã®ãªã¼ã±ã¹ãã¬ã¼ã·ã§ã³ãã¼ã«ã¨ã¹ã±ã¸ã¥ã¼ãªã³ã°ã®ãã¬ã¼ã ã¯ã¼ã¯ã«ãªãã¾ãã
ããã¦ãåã ã®ã¿ã¹ã¯ã®ã¯ã¼ã¯ããã¼ã®ç¶æ ããé²è¡ç¶æ³ã確èªã§ããUIãåãã¦ãã¾ãã
æ©æ¢°å¦ç¿ãã¤ãã©ã¤ã³ã®å¦çã«ã¤ãã¦
Mesonã®æ©æ¢°å¦ç¿ãã¤ãã©ã¤ã³ã®å¦çã«ã¤ãã¦ã¯ãTensorflowãDockerã§åãããããã¢ãã«çæã«Sparkãç¨ããçã®å¦çãããã¼åãã¦ããã2æç®ã®ç»åã®ãããªã¯ã¼ã¯ããã¼ã®UIãå®è£ ããã¦ãã¾ãã
Mesonãå¨è¾ºã®æè¡ãã¾ã¨ããä¸æçµµãç´¹ä»ãããã¾ãããMesonãæ§ã ãªã¬ã¤ã¤ã¼ã§ä»ã·ã¹ãã ã¨é£æºãã¦ãã¾ãã
ã¾ã¨ã
Netflix社ã®æ©æ¢°å¦ç¿ã®åãçµã¿åã³Maesonã®ä¸ã§ã®å¦çã®æ¦è¦ã«ã¤ãã¦ã¬ãã¼ããã¾ããã
ä»å¾ãæ©æ¢°å¦ç¿ã®ã·ã¹ãã ãèæ ®ããéã«åèã«ããã¦ããã ãããå 容ã§ããã