ã¢ã¹ã¯ã¯ï¼ï¼£ï¼®ï¼®ï¼Â ãã·ã¢å½å¶ã¡ãã£ã¢ã¯ï¼ï¼æ¥ãåé¨ã¯ã©ã¹ããã¼ã«å°æ¹ã§è¤æ°ã®è¢«å®³è ã殺害ãã¦éºä½ã®ä¸é¨ãé£ã¹ã¦ããã¨ãã¦ãï¼ï¼æ³ã®ç·ã¨ãã®å¦»ãè¦å¯ã«é®æãããã¨ä¼ãããï¼ï¼ï¼ï¼å¹´ä»¥æ¥ãï¼ï¼äººãã®äººã ã殺害ãããå¯è½æ§ãããã¨ãããææ»å½å±ã¯ãã·ã¢å²ä¸ãææªç´ã®äººèé£äºä»¶ã¨ã¿ã¦èª¿ã¹ã¦ããã RIAãã¼ãã¹ãéä¿¡ã«ããã¨ãä»æã«å ¥ããã¯ã©ã¹ããã¼ã«ã®è·¯ä¸ã«è½ã¡ã¦ããæºå¸¯é»è©±ããããã©ãã©ã«ããã女æ§ã®éºä½ã®åã§èªæ®ãããç·ã®åçãè¦ã¤ãã£ãããã®å¥³æ§ã®éºä½ã¯ç¿æ¥ã«ãªã£ã¦ãä»è¿ã«ãã£ããã°ãã®ä¸ããçºè¦ãããã æºå¸¯é»è©±ã®æã¡ä¸»ã®ç·ã¯å½åã女æ§ã®æ®ºå®³ãå¦å®ãéºä½ãè¦ã¤ãã¦ä¸ç·ã«åçãæ®ã£ãå¾ãæºå¸¯é»è©±ããªãããã¨ä¸»å¼µãã¦ãããããããã®å¾ããã®å¥³æ§ã¨ãï¼ï¼ï¼ï¼å¹´ã«æ®ºå®³ãããå¥ã®äººç©ã®ï¼äººã«ã¤ãã¦ã殺害ãèªããã¨ããã ããã¾ã§ã®ææ»ã§ã¯ãå å·¥ããã人ã®æãå ¥ã£ãã¬ã©ã¹å®¹å¨ãè¦ã¤ãã£ãã容çè ã®
ããããèãã¦ã¿ãããTensorFlowãããã¯ã¨ã³ãã¨ãã¦Kerasãåãããããã«Rä¸ã§åãããããããã¨ã¯ãããã®ã®ãèå¿ã®TensorFlowãçã§æ¸ãããã¨ã£ã¦æ°ããããããããªãã£ãã®ã§ãããããã§ã¯ãããã¨æãã®ã§ãä»æ´ãªããã§ããTensorFlowãçã§æ¸ãã¦ããç·´ç¿ãä¸è»¢å «åããªãããã£ã¦ãããã¨æãã¾ãã ãªãæ¯åº¦æ¯åº¦æ¸ãã¦ãã¾ãããæ¢ã«webä¸ã«ã¯é常ã«è¯è³ªãªå®è·µçè¨äºãå¤æ°å ¬éããã¦ãã¾ãã®ã§ãæãã¦ãã®è¨äºããTensorFlowã®ä½ããããå¦ã¼ããªã©ã¨ããæ°ãèµ·ããã¬ãããããããçæ§ãããããé¡ããããã¾ãm(_ _)m TensorFlowã§ãã¸ã¹ãã£ãã¯å帰ããã£ã¦ã¿ã 以ä¸ãå®éã«ã¯JuPyter Notebookã§ãã£ã¦ãã¾ããããã°ã«åå¿é²ã¨ãã¦è²¼ãä»ããé½åä¸ããã ã®çã³ã¼ãã¨ãã¦è²¼ã£ã¦ããã¾ãããã¼ã¿ã»ããã¯ä»¥ä¸ã«è»¢ããã¦ããã¾ãã ãªããã
æ¹åãã¼ã¿ã«å¯¾ããå¤åç¹æ¤åºã®è«æãèªãã ã¨ãããé¢ç½ãã£ãã®ã§ã¡ã¢ãæ®ãã¦ããã¾ã(è«æãã¹ã©ã¤ã)ãIJCAI2016ã®è«æã§ãã ç°å¸¸æ¤ç¥ã¯éè¦ãªé åã§ããã«ãé¢ããããã¾ã ã¾ã æ¯ãã¦ããªãã¦è«æèªãã§ã¦é¢ç½ããã®ãå¤ãã§ããã åé¡è¨å® 確çåå¸ã®é¸æ ç°å¸¸æ¤ç¥ã®æ¹æ³ ç®çé¢æ° è¤æ°ã®ãã¿ã¼ã³ã«å¯¾å¿ã§ããããã«ãã ç°å¸¸åº¦ã¨ãã¦ã®KLãã¤ãã¼ã¸ã§ã³ã¹ å®é¨: Failure detection of ore belt conveyors åé¡è¨å® å¤æ¬¡å ãã¤ãã¤ãºã®å¤ãæç³»åãã¼ã¿ã«å¯¾ãã¦å¤åç¹æ¤åºãè¡ããã å®ãã¼ã¿ã§ã¯ãããå¤æ°ã«ã®ã¿ãã¤ãºãä¹ãã¨ãããããç¸ä¹çã«ãã¤ãºãä¹ããã¨ãå¤ããããã®ãã¤ãºã誤æ¤ç¥ããããªã ä¾: åãã¢ã¼ã¿ã¼ã§è¤æ°ã®ãã«ãã³ã³ãã¢ãæä½ããã¦ããã®ã§ãä¸ç·ã«ã»ã³ãµã¼ã®ãã¤ãºãä¹ã 確çåå¸ã®é¸æ è¤æ°ã®å¤æ°ã«åæã«ãã¤ãºãä¹ãå ´åããã¯ãã«ã®ãã«ã
ç°å¸¸æ¤ç¥ã®ä¸ç°ã§å¤ãå¤æ¤ç¥ããã£ã¦ããã¨ãã©ã®äºä¾ãå¤ãå¤ãåããã ããããªãã¦ãã©ã®æ¬¡å ããããããªã£ãããæãã¦æ¬²ããã次å æ°ã100ã¨ãããã¨ãã©ã®æ¬¡å ãããããåãããã¦ããã人æã§è¦ãã®ã¯å¤§å¤ãã¨ããã®ãã¡ãã»ãèãã¾ããGaussian Markov Random Field (GMRF)ã使ãã¨ãã©ã®æ¬¡å ã®åãããããããªã£ãããç°å¸¸æ¤ç¥ã®æ çµã¿ã§æãããã¨ãã§ããå ´åãããã¾ãã ç°å¸¸æ¤ç¥æ¬ã®èªæ¸ã¡ã¢ Part 3(çæ§é å¦ç¿ã«ããç°å¸¸æ¤ç¥) - yasuhisaâs blog ã°ã©ãã£ã«ã« Lasso ãç¨ããç°å¸¸æ¤ç¥ ãããããã®æ¹æ³ã¯ä½¿ããç¶æ³ãéå®çã§ãã·ã¹ãã ã®ç¶æ ãè¤æ°ãã(ä¾: æ¼ã¨å¤ã§è² è·ãéããªã©)å ´åã«ã¯ãã¾ãæ©è½ãã¾ãããã·ã¹ãã ã«è¤æ°ã®ç¶æ ãåå¨ãããã¨ã¯å®ãã¼ã¿ã§ã¯çãããªãã®ã§ããããã£ãç¶æ³ã«ã対å¿ã§ããæ¹æ³ãæ¢ãã¦ããã¨ãããã´ã£ããã®è«æã
We discuss problems the null hypothesis significance testing (NHST) paradigm poses for replication and more broadly in the biomedical and social sciences as well as how these problems remain unresolved by proposals involving modified p-value thresholds, confidence intervals, and Bayes factors. We then discuss our own proposal, which is to abandon statistical significance. We recommend dropping the
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}