ãã¤ãããã¾ã§ãï¼ä»åã¯ç°¡åãªã¡ãã»ã¼ã¸åä¿¡æ°ã®ãã¼ã¿ã使ã£ã¦ï¼å¤åãã¤ãºã«ããå¤åç¹æ¤ç¥ããã£ã¦ã¿ããã¨æãã¾ãï¼ãªãï¼ä»å使ããã¼ã¿ãã¢ãã«ã¯ä¸è¨ã®PyMCã®å ¥éæ¸ãåèã«ãã¦ãã¾ã*1. Pythonã§ä½é¨ãããã¤ãºæ¨è«-PyMCã«ããMCMCå ¥é-ãã£ã¡ãã³-ããããã½ã³-ããã³ ãã®æ¬ã§ã¯æ¨è«ã«MCMCã使ã£ã¦ãã¾ããï¼ä»åã¯ã¢ãã«ã¯ãã®ã¾ã¾æµç¨ãï¼åããã¨ãå®ç¾ããå¤åãã¤ãºã«ããè¿ä¼¼æ¨è«ãå°ãã¦ã¿ã¾ãï¼ ä¸è¬çã«ã¯å¤åãã¤ãºã®æ¹ãè¨ç®ãé«éãªã®ã§ï¼MCMCã®æ§è½ã«æºè¶³ã§ããªãå ´åãªã©ã¯å¤åãã¤ãºã¯è¯ã代æ¿ææ³ã«ãªãå¾ã¾ãï¼ã¾ãï¼ä»åç´¹ä»ããä¾ã¯ï¼éå»ã«ç´¹ä»ããæ··åã¢ãã«ã使ã£ãä¾ãããæ¯è¼çã·ã³ãã«ã§ãã®ã§ï¼å¤åãã¤ãºã®å ¥éé¡æã«ã¯ã¡ããã©è¯ãããããªããã¨æã£ã¦ãã¾ãï¼ MCMCã«ããå¤åç¹æ¤ç¥ ã»ã¡ãã»ã¼ã¸åä¿¡ãã¼ã¿ PyMCæ¬ã§ã¯æ¬¡ã®ãããªãããæéã§åä¿¡ããã¡ã¼ã«æ°ã
åæ© ä»äºã§å¤åç¹æ¤ç¥ãããæ©ä¼ãããã¾ããããã®æã¯æéããªãã£ãäºããããyokkunsããããããã¦ããARIMAã¢ãã«ã使ã£ãã¢ã«ã´ãªãºã ãåèã«ããã¦ããã ãä½ãã¾ããããã ãARIMAã¢ãã«ã ã¨è²ã ã¨é¢åãªã¨ããããã£ãã®ã§kalman filterã§æ¸ãæãã試ã¿ã次第ã§ãã ARIMAã¢ãã«ã®åé¡ç¹ ãã©ã¡ã¿èª¿æ´ãé¢å 対象ã¨ããwindow以ä¸ã®ãã¼ã¿ãæºã¾ãã¾ã§è§£æã§ããªã windowå ã«åä¸ãã¼ã¿ã®ã¿ã並ãã ãã¯ãã«ã¨ãªã£ãå ´åãéè¡åãè¨ç®åºæ¥ãªã åèæç® ãã¼ã¿ãã¤ãã³ã°ã«ããç°å¸¸æ¤ç¥ ãã¤ãºçµ±è¨ãã¼ã¿è§£æ (Rã§å¦ã¶ãã¼ã¿ãµã¤ã¨ã³ã¹ 3) 主ã«åèã«ããã®ã¯ãã¿ããªå¤§å¥½ãããã¼ã¿ãã¤ãã³ã°ã«ããç°å¸¸æ¤ç¥ãã§ãã æ¦è¦ è¨ç®ã¹ãããã¯ä»¥ä¸ã®ã¨ããã§ãã è¨ç®ã¯å¤§ããåãã¦ãå¦ç¿ã¹ãããã¨ã¹ã³ã¢è¨ç®ã¹ãããã«åãããã¨ãã§ãã¾ãã å¦ç¿ã¹ããã ãã¡ãã¯æ°ããã
ï¼â»å®é使ã£ã¦ã¿ãã¨ã¤ãã¤ãã ã£ãï¼ R ã® changepoint ã¯å¤åç¹æ¤åºãè¡ãããã±ã¼ã¸ã§ãã ããããCROPS ãç¨ããæé©å¤åç¹æ¢ç´¢ãã¡ãã£ã¨é¢åãªã®ã§èªååããé¢æ°ãæ¸ãã¾ããã library(changepoint) auto_changepoint <- function(x, pen.value = c(1, 1000), minseglen = 5) { # CROPS ã§å ¨ã¦ã®å¤åç¹åå²ãç®åº crops <- cpt.meanvar(x, penalty = "CROPS", pen.value = pen.value, method = "PELT", minseglen = minseglen) penaltys <- pen.value.full(crops) penaltys_diff <- rev(diff(penaltys)) # ããã«ãã£ã°ã©
æ¹åãã¼ã¿ã«å¯¾ããå¤åç¹æ¤åºã®è«æãèªãã ã¨ãããé¢ç½ãã£ãã®ã§ã¡ã¢ãæ®ãã¦ããã¾ã(è«æãã¹ã©ã¤ã)ãIJCAI2016ã®è«æã§ãã ç°å¸¸æ¤ç¥ã¯éè¦ãªé åã§ããã«ãé¢ããããã¾ã ã¾ã æ¯ãã¦ããªãã¦è«æèªãã§ã¦é¢ç½ããã®ãå¤ãã§ããã åé¡è¨å® 確çåå¸ã®é¸æ ç°å¸¸æ¤ç¥ã®æ¹æ³ ç®çé¢æ° è¤æ°ã®ãã¿ã¼ã³ã«å¯¾å¿ã§ããããã«ãã ç°å¸¸åº¦ã¨ãã¦ã®KLãã¤ãã¼ã¸ã§ã³ã¹ å®é¨: Failure detection of ore belt conveyors åé¡è¨å® å¤æ¬¡å ãã¤ãã¤ãºã®å¤ãæç³»åãã¼ã¿ã«å¯¾ãã¦å¤åç¹æ¤åºãè¡ããã å®ãã¼ã¿ã§ã¯ãããå¤æ°ã«ã®ã¿ãã¤ãºãä¹ãã¨ãããããç¸ä¹çã«ãã¤ãºãä¹ããã¨ãå¤ããããã®ãã¤ãºã誤æ¤ç¥ããããªã ä¾: åãã¢ã¼ã¿ã¼ã§è¤æ°ã®ãã«ãã³ã³ãã¢ãæä½ããã¦ããã®ã§ãä¸ç·ã«ã»ã³ãµã¼ã®ãã¤ãºãä¹ã 確çåå¸ã®é¸æ è¤æ°ã®å¤æ°ã«åæã«ãã¤ãºãä¹ãå ´åããã¯ãã«ã®ãã«ã
äºåºå çã®ãç°å¸¸æ¤ç¥ã¨å¤åæ¤ç¥ããèªãã§ï¼èªåã§ã試ãã¦ã¿ããã¨æã£ããã§ããï¼ããã«ãã¡ããã©ããæç³»åãã¼ã¿ãæå ã«ãªããªã¼ã¨æã£ã¦ã¾ããï¼ãããªæï¼ãã¼ã¿ãµã¤ã¨ã³ã¹LTç¥ãã®çºè¡¨ã®ä¸ã«ï¼Fitbitãã¼ã¿ãå¯è¦åãããã®ããã£ã¦*1ï¼ããã¯ã¡ããã©ããã¨ãããã¨ã§è©¦ãã¦ã¿ã¾ãããã¨ããã¦ãã®ã¨ã³ããªã«ãªãã¾ãï¼ ç°å¸¸æ¤ç¥ã¨å¤åæ¤ç¥ (æ©æ¢°å¦ç¿ãããã§ãã·ã§ãã«ã·ãªã¼ãº) ä½è : äºæå,æå±±å°åºç社/ã¡ã¼ã«ã¼: è¬è«ç¤¾çºå£²æ¥: 2015/08/08ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼ãã®ååãå«ãããã° (2件) ãè¦ã Fitbitã£ã¦ãªã«ã Fitbitãä½ããããªã人ã®ããã«ä¸å¿èª¬æãã¦ããã¨ï¼æè¿ã¯ããã®æ´»åéè¨ã§ãï¼ç§ãæã£ã¦ããã®ã¯ï¼å¿æãåå¾ã§ããã¿ã¤ãã®ãã¤ã§ãï¼é¢¨åã«å ¥ãã¨ã以å¤ã¯ä¸æ¥ä¸ã¤ãã£ã±ãªãã§ï¼ç¡ç ã¨ãéåã¨ããèªåã§å¤å®ãã¦ãããã®ã§ï¼æéããããã便å©ã§ã
èªãã Behav Ecol Sociobiol. 2007 Dec;62(2):245-253 dimorphic allometry ã¨ããäºå½¢æ§ã®æé·ãè¦ã¦ãã¦ããã®å¤åç¹ãããã¨ãããæ¨å®ããã è«æã§ã¯T. dichotomus septentrionalis ã¨å¼ã°ãããããããã«ããã ã·ã®ä½ã®å¤§ãã(body) ã¨è§(horn) ã«ã¤ãã¦ãã¼ã¿ãã¨ã£ã¦ããã ãã¼ã¿ã«ã¤ãã¦ã対æ°ãã¨ã£ãbody ã®å¤§ããã¨å¯¾æ°ãã¨ã£ãhorn ã®é·ãã«ã¤ã㦠ã¨ããç·å½¢å帰(ãã©ã¡ã¼ã¿ã«é¢ãã¦è¨ãã°ãç·å½¢)ãèãããææã«0ããé¢ãã¦ããã°ãã®é ãããã¦ããã®ã§ä»¥éã®è§£æã¯éç·å½¢ã§ããã¾ããã¨ãã£ã¦ããããè¨ããããã¨ã¯ç¢ºãã«ããããã ããããã£ã¦ãã ã®é«æ¬¡ã®é ãå«ã¿ããã¾ãã£ã¦è¨ã£ã¦ãã ãã§ããã©ã¡ã¼ã¿çã«éç·å½¢ã§ãããã¯å¦å®ã§ãã¦ãªããããªæ°ãããªãã§ããªãã æ¬çã§ã¯ãªãã®ã§è§£æã«ãã
ã¡ã¼ãªã³ã°ãªã¹ãã§Stanã«ããã¦ç´¯ç©åã使ã£ã¦å¤åç¹æ¤åºãé«éåãã話ãããã¾ããã®ã§ã¡ã¢ã§ãã ããã§ã¯Rã«ã¯ããããç¨æããã¦ããNileã®ãã¼ã¿ã«å¯¾ãã¦å¤åç¹æ¤åºãã¾ããããããããã¨ä»¥ä¸ã§ãã ããã§ã¯ãããå¤åç¹ããå·¦ã®é¨åã§ã¯å¹³åmu_lã»æ¨æºåå·®sigmaã®æ£è¦åå¸ã«å¾ããå³ã®é¨åã§ã¯å¹³åmu_rã»æ¨æºåå·®sigmaã®æ£è¦åå¸ã«å¾ãã¨ãã¾ãã ããã¨ãå¤åç¹ã¯é¢æ£å¤ãã¨ããã©ã¡ã¼ã¿ãªã®ã§ãå¨è¾ºåæ¶å»ããªãã¦ã¯ããã¾ãããåç´ã«ã¯if_elseé¢æ°ã使ã£ã以ä¸ã®å®è£ ã«ãªãã¾ãã 7, 8è¡ç®ï¼ç¯å²ãããã¾ãã«æå®ãã¦ãã¾ããããã¯å®è¡æã«ãã¼ã¿ã1000ã§å²ã£ã¦ã¹ã±ã¼ãªã³ã°ããã®ã§ããã®å¤ã«ãªã£ã¦ãã¾ãã ãããããã®å®è£ ã¯åcpã«ããã¦ãnormal_log(Y[t], mu_l, sigma)ã¨normal_log(Y[t], mu_r, sigma)ãéè¤ãã¦è©ä¾¡ãã¦ã
å¤åç¹æ¤åºã®ã¢ã«ã´ãªãºã ã¨ãã¦ãChangeFinderã¨ããæåãªã¢ã«ã´ãªãºã ãããã¾ããRã«ããå®è£ ä¾ãè¦ã¤ãããªãã£ãã®ã§å®è£ ãã¾ãããä»åã¯ï¼æ¬¡å ã®ãã¼ã¿ã«å¯¾ããå¤åç¹æ¤åºãèãã¾ããã¢ã«ã´ãªãºã ã®è©³ç´°ã¯è¨è¿°ãã¾ããã®ã§ãå¾è¿°ã®åè群ãåç §ãã¦ãã ããã å®è£ ã¾ããæºåã¨ãã¦äºãï¼ã¤ã®é¢æ°ãå®ç¾©ãã¦ããã¾ãã ï¼ã¤ç®ã¯ãã¢ã«ã´ãªãºã å ã§ç¨ããå¹³æ»åç¨ã®é¢æ°ã§ãã ï¼ã¤ç®ã¯ãæ¬ä¼¼éè¡åãè¨ç®ããé¢æ°ã§ããè¨ç®ä¸ãéè¡åãåå¨ããªãå ´åãããã¾ãã®ã§ãæ¬ä¼¼éè¡åãè¨ç®ããå¿ è¦ãããã¾ããä»åã¯ã ã¼ã¢ã»ãã³ãã¼ãºéè¡åãå®è£ ãã¦ãã¾ãã ## å¹³æ»åç¨é¢æ° MW <- function(dat, width, na.rm = TRUE) { N <- length(dat) x <- numeric(N) for(i in 1L:(width-1L)) { x[i] <- mean(d
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}