çãã¤ã³ã¿ãC++ã§ä½¿ãã®ãä¸å®ã§ä»æ¹ãªãã®ã§ã¹ãã¼ããã¤ã³ã¿ãåå¼·ãã¦ããã®ã ããunique_ptrå¨ãã®æåã§ç¬ç¹ãªé¨åããã£ãã®ã§ã¾ã¨ãã¦ãããã¨æãã ããªã¢ã¼ãã£ãã¯ãªå®ç¾©ãããã¨ã C++ã§ããªã¢ã¼ãã£ãã¯ãªã³ã¼ããæ¸ãã¨ãã¯ã次ã®ããã«è¦ªã¯ã©ã¹ã®ãã¤ã³ã¿ã«åã¯ã©ã¹ãnewã§ä»£å ¥ãããã¨ãå¤ãã ãã ã誰ããç¥ãããã«å¤§ååã¨ãã¦newãããå¿ ãdeleteããªããã°ãªããªãã®ã§ããã®æ¹æ³ã§ã¯ãã£ããdeleteãå¿ããä¸å®ãã¤ãã¦åãã ããã§ãã¤ã³ã¿ã®ä»£ããã«ã¹ãã¼ããã¤ã³ã¿ã使ããããã¯C++11以éå°å ¥ãããæ©è½ã§ãã¹ã³ã¼ããæããã¨ãåæã«ãã¹ãã©ã¯ã¿ãå¼ãã§ããã便å©ãªä»£ç©ã ã使ãã«ã¯memoryã©ã¤ãã©ãªãincludeãã¦ãããããã«ã³ã³ãã¤ã«ãªãã·ã§ã³ã«-std=c++11ï¼c++11以éãªãããï¼ã¨æå®ããå¿ è¦ãããã
ã¯ããã« éãããã°ã©ã ã§å¾ãããã¡ãªãããè¶ ãããããªã³ã¹ããæããªãããã«ã ã¾ãã¯åãããã°ã©ã ãæ¸ãã¦ç®çãéæãããã¨ã大äºã èªåå¾éãããªãã¦ããã°ã©ã å¾éã ãªã¨æãã段éã§ãªãã¡ã¯ã¿ãªã³ã°ãèããã ããã°ã©ã æ¬æ¥ã®æå³ãèªã¿åããªããªããããªããã¢ãã¯ãªé«éåã¯é¿ããã æ¸ ãæ£ããã¡ã³ããã³ã¹ããããããã°ã©ã ãæ¸ãã»ããçµå±ã¯çç£çã å¦ç¿ç®çã§ãªãéããè»è¼ªã®åçºæãé¿ããã ãããã¨ãã¦ãããã¨ã¯ãã£ã¨æ¢ã«èª°ããå®ç¾ãã åå©ç¨å¯è½ãªå½¢ã§å ¬éãã¦ããã¦ããã¯ãã ã¾ãã¯æ¨æºã©ã¤ãã©ãªã¨ãBoostãæ¢ãã¦ã¿ãã ãã¨GitHubã§ã¹ã¿ã¼ãå¤ããã¤ã¨ãã é å¼µãã³ã³ãã¤ã© Intelã® icc ã§ãã«ããããããã°ã©ã ã¯éããããã gcc ã clang ã®æé©åæè¡ãçã ã¨é²æ©ãã¦ããã æ°ããã³ã³ãã¤ã©ã使ãã»ãããã®æ©æµãåããããã æé©åãªãã·ã§ã³ htt
cereal - A C++11 library for serialization cereal is a header-only C++11 serialization library. cereal takes arbitrary data types and reversibly turns them into different representations, such as compact binary encodings, XML, or JSON. cereal was designed to be fast, light-weight, and easy to extend - it has no external dependencies and can be easily bundled with other code or used standalone. cer
ããããã©ãã§ãããé¢æ°ããã£ãã¨ããã hoge <- function(x) { result = x + 1; for(i in 1:10000000){ result <- result + 1; } result } ãã®é¢æ°ã®å®è¡é度+ããã©ã¼ãã³ã¹ã測ãã«ã¯Rprofé¢æ°ã使ã£ã¦ä»¥ä¸ã®ããã«æ¸ãã > Rprof(tmp <- tempfile()) > a <- hoge(1:10) > Rprof() > summaryRprof(tmp) $by.self self.time self.pct total.time total.pct "hoge" 2.76 61.88 4.46 100.00 "+" 0.88 19.73 0.88 19.73 ":" 0.82 18.39 0.82 18.39 $by.total total.time total.pct self.t
ãã®è¾º Calling R Functions from C++ http://dirk.eddelbuettel.com/papers/rcpp_intro_genentech_2015-01.pdf ã®ä¾ã§ã¯ï¼å¼æ°ãã渡ããªãã±ã¼ã¹ã°ããã ã£ãã®ã§ãè¤æ°å¼æ°ã®é¢æ°ã渡ãããã¨ã«æ°ãã¤ããªãã£ãã以ä¸ã§ã¯é©å½ãªé¢æ°(someFunc)ã¨ãRããé¢æ°ãå¼æ°ã«åã£ã¦å¦çãè¡ãé¢æ°callFuncãå®ç¾©ãã¦ããã library(Rcpp) sourceCpp(code=' #include <Rcpp.h> using namespace Rcpp; // [[Rcpp::export]] NumericVector someFunc(NumericVector x, double t, CharacterVector c) { return (x+t); } // [[Rcpp::expo
Faster Multivariate Normal densities with RcppArmadillo and OpenMP Nino Hardt, Dicko Ahmadou, Benjamin Christoffersen â written Jul 13, 2013 â updated Feb 2, 2020 â source The Multivariate Normal density function is used frequently for a number of problems. Especially for MCMC problems, fast evaluation is important. Multivariate Normal Likelihoods, Priors and mixtures of Multivariate Normals requi
Generating a multivariate gaussian distribution using RcppArmadillo Ahmadou Dicko â written Mar 12, 2013 â source There are many ways to simulate a multivariate gaussian distribution assuming that you can simulate from independent univariate normal distributions. One of the most popular method is based on the Cholesky decomposition. Letâs see how Rcpp and Armadillo perform on this task. #include <
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}