宿é¡ãä¸çæ¸å½ã«ãã£ã¦ãå¦æ ¡ã§ã®å¥½æ績ã¨ã¯çµã³ã¤ããªãã¨ãã親ã«ã¨ã£ã¦ã¯é©ãã¹ããåã©ãã«ã¨ã£ã¦ã¯å¥½é½åãªèª¿æ»çµæãåºã¦ãã¾ã£ãã 調æ»ã¯ç±³ã´ã¡ã¼ã¸ãã¢å¤§å¦ã«ãã£ã¦1ä¸8ååã®é«æ ¡1å¹´çã対象ã«å ¨å½çã«è¡ããããå大å¦ã®æè²ç§å¦åææã§ããã®èª¿æ»ãå®æ½ããRobert Taiã«ããã¨ãçå¾ãèªå® ã§å®¿é¡ã«åãçµãæéãé·ããã°é·ãã»ã©ããã¹ãã§é«å¾ç¹ãåããã¨ãããã¨ã¯ç¢ºãã§ã¯ãªãã¨ããã®ã ããã ããå ¨ã¦ã®å®¿é¡ãç¡é§ã¨ããããã§ã¯ãªããã¨ããããæ°å¦ã«ã¤ãã¦ã¯å½ã¦ã¯ã¾ããªããå®éã«èªå® ã§1æéç¨åº¦æ°å¦ã®åå¼·ããã¦ããçå¾ã¯é«ã¹ã³ã¢ããã¼ã¯ããã¨ããã Taiåææã¯æ¬¡ã®ããã«èªã£ã¦ããããæã ãæ¸å¿µãã¦ãããã¨ã¯ãææ¥ã§æãã£ããã¨ãçµ±åããããã®å®¿é¡ã¨ãããããããã宿é¡ããã åã«ä¸ããããã ãã®ãã®ã«ãªã£ã¦ãããã¨ã§ããããã®èª¿æ»ã¯æè²ã«å¾äºãã人ãã¡ãå¼ã³è¦ã¾ããã£ããã¨ãªãã ãããå
â é ååã®æå°å®å ¨ããã·ã¥é¢æ° ï¼ããï¼ã¾ã§ã®ï¼åã®æ°åãä¸ã®ããã«ä¸¦ãã§ããå ´åãä¾ã«ãã¦èª¬æãã¾ãã ï¼åã®æ°åã®ä¸¦ã¹æ¹ã¯ï¼ï¼éãããã¾ãã®ã§ï¼ï¼(=120)éãã®ä¸¦ã¹æ¹ã®ç·ã¦ã«å¯¾ãã¦0ãã119ã¾ã§ã®æ°å¤ãä¸æã«å²ãä»ãããã¨ãç®çã¨ãªãã¾ãã ï¼ï¼ï¼ï¼ï¼ ããã§ã¯å·¦å´ããé ã«æ°åãè¦ã¦ãããã¨ã«ãã¾ããæåã®æ°åã¯ï¼ã§æ®ãã®æ°åã®åæ°ã¯ï¼åã§ããã ãã®æ®ãããæ°åã®åæ°åã®ç·é åæ°ã¯ï¼ï¼ã§ããããã®æ°éãåºæ°ã¨è¨ãã¾ãã ã¤ã¾ã左端ã®æ°åãä½ã§ããããå®å ¨ã«èå¥ããçºã«æä½éå¿ è¦ãªåºæ¬ã¨ãªãéã¿ã®ãã¨ã§ãã å¾ã£ã¦å ãæåã®æ°åï¼ã«åºæ°ã§ããï¼ï¼ãæãç®ãã¦ã¯ããåºãã¾ãã [ï¼]ï¼ï¼ï¼ï¼ãâãï¼ï¼ï¼ï¼ 次ã«å·¦ããï¼çªç®ã®æ°åã§ãããããããå ã¯ã¨ã¦ã注æãå¿ è¦ã§ãã ï¼çªç®ã®æ°åã¯ï¼ã§æ®ãã®æ°åã®åæ°ã¯ï¼åã§ããæ®ãã®æ°åã®åæ°ãï¼åãªã®ã§åºæ°ã¯ï¼ï¼ã«ãªãã¾ããã¤ã¾ãåºæ°ãå¤å
確çè«ããã³çµ±è¨å¦ã«ããã¦ãã¬ã³ãåå¸ (ã¬ã³ãã¶ãã·ãè±: gamma distribution) ã¯é£ç¶ç¢ºçåå¸ã®ä¸ç¨®ã§ããããã®æ§è³ªã¯å½¢ç¶æ¯æ° kã尺度æ¯æ° θ ã®2ã¤ã®æ¯æ°ã§ç¹å¾´ã¥ããããã主ã«ä¿¡é ¼æ§å·¥å¦ã«ãããé»åé¨åã®å¯¿å½åå¸ãéä¿¡å·¥å¦ã«ããããã©ãã£ãã¯ã®å¾ ã¡æéåå¸ã«å¿ç¨ããããã¾ãæå¾åå¸ã«ãå¿ç¨ãããã
åæ¿ã®ããã«è¦ããå¸éåãï¼ç·è²ï¼ã®å¸éå㯠x 㨠y ãç¹ãï¼é»è²ï¼ã®ç´ç·é¨åãå«ãã§ãããå¸éåã®å é¨ã«ç´ç·ã®é¨åã®å ¨ä½ãå«ã¾ããã ãã¼ã¡ã©ã³ã®ããã«è¦ããéå¸éåãx 㨠y ãç¹ãï¼é»è²ï¼ã®ç´ç·ã®ä¸é¨ãï¼ç·è²ï¼ã®éå¸éåã®å¤å´ã¸ã¯ã¿åºã¦ããã ã¦ã¼ã¯ãªãã空éã«ãããç©ä½ãå¸ï¼ã¨ã¤ãè±: convexï¼ã§ããã¨ã¯ããã®ç©ä½ã«å«ã¾ããä»»æã®äºç¹ã«å¯¾ãããããäºç¹ãçµã¶ç·åä¸ã®ä»»æã®ç¹ãã¾ããã®ç©ä½ã«å«ã¾ãããã¨ãè¨ããä¾ãã°ä¸èº«ã®ã¤ã¾ã£ãç«æ¹ä½ã¯å¸ã§ããããä¾ãã°ä¸æ¥æå½¢ã®ããã«çªªã¿ãå¹ã¿ã®ãããã®ã¯ä½ããå¸ã§ãªããå¸æ²ç·ï¼è±èªçï¼ã¯å¸éåã®å¢çãæãã å¸éåã®æ¦å¿µã¯å¾ã§è¿°ã¹ãã¨ããä»ã®ç©ºéã¸ãä¸è¬åãããã¨ãã§ããã ãã¯ãã«ç©ºéå ã®å¸éå[ç·¨é] å½æ°ãå¸ã§ãããã¨ã¨ãå½æ°ã®ã°ã©ãã®ï¼ç·è²ã®ï¼é åãå½æ°ã®ã°ã©ãã®ä¸ã«ãããããªå½æ°ã¯ï¼ä¸ã«ï¼å¸ã§ããã S ã¯å®æ°ä½ï¼ãããã¯
é«æ ¡çã®ããã§ããããç°¡åã«èª¬æãã¾ãã é¢æ°f(x)ã¯ãç°¡åã«fã¨æ¸ããã¨ãããã¾ããã¾ããé¢æ°ã®åæã«ã¤ãã¦ããç¥ã£ã¦ãã¾ãããä¾ãã°ãé¢æ°f(x)ã¨é¢æ°g(x)ãåæããã¨f(g(x))ã¨ãªãã¾ãããããç°¡åã«æ¸ãã°fgã¨ãªãã¾ããfgã¨æ¸ãã¦ããããã¨ãã£ã¦ãããã¯fã¨gã®ããç®ã§ã¯ããã¾ãããã¾ããf(f(x)ã¯f^(2)ã¨æ¸ããã¨ãã§ãã¾ãããã®ããã«ãé¢æ°ã®åæããããç®ã¨é¡ä¼¼ã®è¨æ³ã使ãã¾ããããããæ®éã®ããç®ã¨éã£ã¦ãä¹æ³ã®äº¤ææ³åãæãç«ã¡ã¾ãããããããéè¦ãªãã¨ã¯ãçµåæ³åãæãç«ã¤ãã¨ã§ãããã®ããã«ãé¢æ°ã®åæãããç®ã¨é¡ä¼¼ã®è¨æ³ã使ã£ãå ´åã g(f(x))=x ã¯ã©ã®ããã«æ¸ã表ããã¨ãã§ãã¾ããã gf=1 ã¨ãªãã¾ãããï½ã¯ï½ã®éé¢æ°ã§ãããã¨ã¯ããã«ãããã¨æãã¾ããããã§ãï½ã¯éé¢æ°ã®åå¨ããé¢æ°ã§ãªããã°ãªãã¾ãããç°¡åãªè¨æ³ã§ã¯ãgf=1ã§ãã
^ K.O. Geddes, M.L. Glasser, R.A. Moore and T.C. Scott, Evaluation of Classes of Definite Integrals Involving Elementary Functions via Differentiation of Special Functions, AAECC (Applicable Algebra in Engineering, Communication and Computing), vol. 1, (1990), pp. 149-165, [1] M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Ne
ãèªå¦ã¨ãã¦ã®æ°å¦ããè£å®ããæå³ã§ã ããã®ãããã®æ°å¦ãå¦ã¶ã¨ããããªãã¨ã¾ã§ã§ããï¼ï¼ã ã¨ãã£ãåæ©ã¥ãè¨äºããä½åãã«åãã¦ãã£ã¦ã¿ããã¨æãã åæ©ã¥ãããªãã¨å¦ãã§ã使ããªããã¨ã«ãªãã ããããå¦ã³ã ãã¦ãéä¸ã§ããããã確çãé«ããããããå¦ã¼ãã¨ããæ°ãèµ·ããªãæ°ãããã ãªãã¹ãåççãªã¨ãããããåæ©ä»ããç¨æãããã¨æã£ãã®ã§ãï¼åç®ã¯ä¸å¦æ°å¦ããããæåå¼ãããã¾ã§ãã§ããã æ£ç´ããã®ã¬ãã«ã®æ°å¦ã§ã大人ãããããããããã¿ããæµ å¦ã®èº«ã§ã¯è¦ä»ãããã¨ãé£ããã£ãã ã¨ããããã§ãããã£ã±ãªããããããªãã¿ã§ããï¼ç¥ã£ã¦ã人ã¯ãåç¥ã®ãã®ãã¿ã§ããï¼ã ããã¦å ¨å¾®åãããã¾ã§ããã°ããæ¯æ°å¯¾çãªãã¦ç¸æ®ºããã¡ãã£ã¦æå³ç¡ãããã¨ãã£ããæ§é æ¹é©ããªäººã寿ããå½é¡ãæ±ããã®ã ããå ¨å¾®åã©ãããåå¾®åããé«æ ¡ã§ãç¿ããªãã®ã ããã§ãããæ¹ç¨å¼ããã¯ãããã¨ãéã®ãã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}