See related links to what you are looking for.
Q. ã¾ãããªããæ¥æ¬ã«æãäºãåºæ¥ã¦ãã¡ã³ã¯ã¨ã¦ãåãã§ãã¾ããæ¥æ¬ã§ããã¹ãããã¯ãã¨ã¬ã¯ãããã«ããã¯ããªã©ã«é¢ããå¤ãã® ã¢ã¼ãã£ã¹ããSilver Applesã®å½±é¿ãåããã¨è¨ããã§ãããããããã£ããã£ã¼ãããã¯ãããªãã¯ã©ã®ããã«æãã¾ããï¼ A. ãã¾æãããããããªé³æ¥½ã¯å¤§å¥½ãã ããããã¦ãèªåã®é³æ¥½ããã¨ãå°ããã¦ãç¾å¨ã®é³æ¥½è¡¨ç¾ã®çºå±ã«é¢ããããã¨ãã¨ã¦ãèªãã«æã£ã¦ãããã Q. 68å¹´ã«çºè¡¨ãããã¡ã¼ã¹ãã¢ã«ãã ãThe Silver Applesããå¶ä½ããæã®äºããªãã¹ã詳ããæãã¦ãããã¾ããï¼å½æã®é³æ¥½ã·ã¼ã³ã®ä¸ã§ã©ã®ãããªçµç·¯ã§Silver Applesã®é³æ¥½ã¯çºçããã®ã§ããããï¼ A. KAPP Recordsã®ã¹ã¿ã¸ãªã§4ãã©ãã¯ã®ãã¼ãã«ä¸æ°ã«é²é³ãããã ãããã¯LIVEããããã«ããç·¨éä½æ¥ã¯ãã«ãã½ãªã®åãã»ããã³ãã¼ãã使ã£ã¦ãã¼ããåã
ãã®è¨äºã¯æ¤è¨¼å¯è½ãªåèæç®ãåºå ¸ãå ¨ã示ããã¦ããªãããä¸ååã§ãã åºå ¸ã追å ãã¦è¨äºã®ä¿¡é ¼æ§åä¸ã«ãååãã ãããï¼ãã®ãã³ãã¬ã¼ãã®ä½¿ãæ¹ï¼ åºå ¸æ¤ç´¢?: "ã¢ãã«ã³æ" ãããç¨èªÂ â ãã¥ã¼ã¹Â · æ¸ç±Â · ã¹ã«ã©ã¼Â · CiNii · J-STAGE · NDL · dlib.jp · ã¸ã£ãã³ãµã¼ã · TWL (2011å¹´9æ) ã¢ãã«ã³æï¼ã¢ãã«ã³ããï¼ã¯ãã¤ã³ã¿ã¼ãããä¸ã®è°è«ã«ãããè«å®¢ã®ä¸é¡åã表ãã¤ã³ã¿ã¼ãããã¹ã©ã³ã°[1]ã ã¢ãã«ã³æã«ã¤ãã¦ã®è¦³å¯ã¨èå¯ã¯ä¸»ã«ã¯ã¦ãªã°ã«ã¼ãä¸ã®mohicanã°ã«ã¼ãã§å±éãã[2]ãèªç±å½æ°ç¤¾ãç¾ä»£ç¨èªã®åºç¤ç¥è2006ãã®ãã¯ã¦ãªãã¤ã¢ãªã¼ãã¼ã¯ã¼ã100ãã«ãé¸ã°ããã ã¢ãã«ã³æã®é¡åã¯ãã¤ã³ã¿ã¼ããããããã¯ä»ã®ã³ã³ãã¥ã¼ã¿ãããã¯ã¼ã¯ã®å¤ãå©ç¨è ã®æåã«ä¼¼ããã¯ã¦ãªã°ã«ã¼ã mohicanã«ãããã¢ãã«ã³æ宣è¨ãªã©
é³å£°èªèã¯äººå·¥ç¥è½ã®åéã®ä¸ã§ãç¬èªã®é²åãã¨ããåéã§ï¼è¯ããæªããã¬ã©ãã´ã¹çã¨è¨ãããããã¾ãï¼ ç¹ã«å¤§èªå½é£ç¶é³å£°èªèãå®ç¾ããæ¢åã®ã½ããã¦ã¨ã¢ã¯å¤§è¦æ¨¡ãã¤è¤éã§ï¼é³å£°èªèã®å°é家ã§ãããå ¨ä½ãç解ãã¦æ¹è¯ãå ãããã¨ã¯å¿ ããã容æã§ã¯ããã¾ããï¼ãã®ãã¨ã¯è¿é£åéã¨é³å£°èªèã³ãã¥ããã£ãåæããéå£ã¨ããªã£ã¦ãã¾ãï¼ ãããé³å£°èªèãå®ç¾ããã¢ã«ã´ãªãºã èªä½ã¯ï¼åºæ¬çã«ã¯å®ã¯ããã»ã©é£è§£ãªãã®ã§ã¯ããã¾ããï¼ã½ããã¦ã¨ã¢ãè¤éãªã®ã¯ï¼å¤åã«è¨ç®éãã¡ã¢ãªéåæ¸ã®ããã®æ§ã ãªå·¥å¤«ãCã«ä»£è¡¨ãããæç¶ãåããã°ã©ãã³ã°è¨èªã®æ½è±¡åè½åã®éçã«èµ·å ãã¦ãã¾ãï¼ ä»æ¹ï¼ã½ããã¦ã¨ã¢å·¥å¦ã®åéã§ã¯è¤éãªå¦çãã³ã³ãã¯ãã«è¨è¿°å¯è½ãªæ¬¡ä¸ä»£ããã°ã©ãã³ã°ãã©ãã¤ã ã¨ãã¦ï¼ç´ç²é¢æ°åè¨èªãç 究ããã¦ãã¾ãï¼ç´ç²é¢æ°åè¨èªã¯é·ããç 究段éã«çã¾ã£ã¦ãã¾ãããï¼è¿å¹´ã¯Haskellãªã©å®ç¨æ§ã®é«
4æ4æ¥ãç±³å½ã®9ã¤ã®å»å¦ä¼ããå»å¸«ã¨æ£è ãåãç´ãã¹ã5ã¤ã®é ç®ãã¨ãããªã¹ããçºè¡¨ãã¾ãããããã«ãããåºæ¬çã«ä¸è¦ãªå»çè²»ã®åæ¸ãå¯è½ã«ãªãããã®åæ¸é¡ã¯ãªãã¨æ°å ãã«ï¼ï¼ï¼ã«ä¸ãã¨ããã¾ãã ç±³å½å®¶åºå»å¦ä¼ï¼AAFPï¼ãæ示ããä¾ãè¦ã¦ã¿ã¾ãããã ãä¸ç度ã®å¯é¼»è çï¼ãããããèè¿çãï¼é¼»ã¥ã¾ããé çãèµ·ããï¼ã«å¯¾ãã¦ã1é±é以ä¸çç¶ãç¶ãã¦ããå ´åãã¾ãã¯çç¶ã軽快ãããããã¨ã«æªåããå ´åãé¤ãã¦ãæçç©è³ªãå¦æ¹ãã¦ã¯ãªããªãã ãé²è¡æ§ã®ç¥çµå¦çãªæè¦ã骨é«çãçãããæè¦ããªãå ´åãèé¨çãèµ·ãã£ã¦ãã6é±é以å ã«åçãæ®å½±ãã¦ã¯ãªããªãã ããã¯ããä¸ç度ã®èè¿çã¯ã1é±é以ä¸çç¶ãç¶ãã¦ããã®ã§ãªããã°ãæçç©è³ªã¯åºãã¾ããããããã¦ãèä¸ãçãã¦ããããã6é±é以ä¸ç¶ãã®ã§ãªããã°ã¬ã³ãã²ã³åçã¯æ®ãã¾ãããã¨ãããã¨ã¨ãã»ã¼å義ã§ãã ç±³å½å ç§å°éå»èªå®æ©æ§è²¡å£ã
移æ°ææ¥ã«ãå¹ãï¼ããã©ã³ã¹ã®ãã人追æ¾æ¿çã«æè°ãã人ã ãRadu Sigheti-Reuters ä¸è¬çã«ãã使ããã¦ããå¿èç ã®è¬ã§ãæ½å¨çãªäººç¨®å·®å¥æèãæ¹ã¾ãå¯è½æ§ãããââãããªç 究çµæãçºè¡¨ãããã ç 究ã§ã¯ã交æç¥çµã®åããæãããã¼ã¿é®æè¬ããããã©ããã¼ã«ããæç¨ãã人ã¨ããã©ã·ã¼ãï¼å½è¬ï¼ãæç¨ãã人ãæ¯ã¹ããããã¨åè ã®ã»ããã人種çåè¦ãæ±ãå¾åãå°ãªãã£ãã¨ãè±ã¤ã³ãã£ãã³ãã³ããå ±ããã ãããã©ããã¼ã«ã¯ãå¿æãªã©ã®èªå¾çæ©è½ãã³ã³ããã¼ã«ããç¥çµåè·¯ã«ä½ç¨ãããåæã«ãæããææ åå¿ã«é¢ä¿ããè³ã®é¨ä½ã«ãä½ç¨ããããã®ããä¸æ´èãé«è¡å§ãªã©ã®ã»ããä¸å®ããããã¯é害ãªã©ã®æ²»çã«ã使ç¨ãããã ä»åã®ç 究çµæã¯ã人種差å¥ã¯ãæããã«æ ¹å·®ããã®ã ã¨ããäºå®ã«ãã£ã¦èª¬æåºæ¥ãã ããââç 究ãè¡ã£ãç§å¦è ãã¡ã¯ããèãã¦ããã¨ããªã¼ã¹ãã©ãªã¢ï¼¡ï¼°éä¿¡ï¼ï¼¡ï¼¡ï¼°ï¼ã¯å ±
ï¼ç¹éã®è·é¢ã®è¨ç®ã§ã¯å¹³æ¹æ ¹ãå¿ è¦ã«ãªãã¾ãããå¹³æ¹æ ¹ã¯å°ãéãè¨ç®ã§ããã¨ãããã¨ã§ãå¹³æ¹æ ¹ã使ãããæãç®ã»å²ãç®ã»è¶³ãç®ã¨çµ¶å¯¾å¤ã»æ大ã»æå°ã ãã§è·é¢ãè¿ä¼¼ããæ¹æ³ã«ã¤ãã¦ã®è¨äºã翻訳ãã¦ã¿ã¾ããã flipcode - Fast Approximate Distance Functions (12:02 è£è¶³ï¼ããããä»ã®æ¨æºçãªCPUã§ããæå³ã¯ã»ã¨ãã©ãªãã¨æãã¾ããè¿ä¼¼ã®ã¢ããã¼ãã¨ãã¦é¢ç½ãã¨ãããããã®è©±ãZ80ã§ããã¾ããã) è·é¢é¢æ°é«éè¿ä¼¼ by Rafael Baptista (27 June 2003) ï¼ç¹éã®ã¦ã¼ã¯ãªããè·é¢ãæ±ããè¨ç®å¼ã¯æ¬¡ã®ããã«ãªãã äºæ¬¡å ã§ã¯æ¬¡ã®ããã«ãªãã ãã®é¢æ°ã®è¨ç®ã«ã¯ãå¹³æ¹æ ¹ãå¿ è¦ã«ãªããããã¯æè¿ã®ã³ã³ãã¥ã¼ã¿ã§ãé«ä¾¡ãªè¨ç®ã§ãããå¹³æ¹æ ¹ã¯é次è¿ä¼¼ã«ãã£ã¦æ±ãããããã¤ã¾ããã³ã³ãã¥ã¼ã¿ã¯å¹³æ¹æ ¹è¿ä¼¼ã®ã«ã¼ããè¡ã£ã¦ãä¸ã
æ©æ¢°å¦ç¿ãã£ã¦ã人ã¯çèªãã¹ãã ã¨æãï¼ Machine Learning that Matters (pdf) æ¦è¦ æ©æ¢°å¦ç¿ã®ãããã«ã³ãã¡ã¬ã³ã¹ICMLã«æ°å¼/ã¢ã«ã´ãªãºã /å®çã1ã¤ãæ¸ããã«éã£ãè«æï¼ æ©æ¢°å¦ç¿ã¯ä½ã®ããã«éè¦ãªã®ãï¼ç¾å®ä¸çã¨ã®ç¹ããã失ã£ã¦ããªããï¼ããªãã¯ãæ©æ¢°å¦ç¿ã£ã¦ä½ã®å½¹ã«ç«ã¤ã®?ãã¨èãããæã«ã¡ããã¨çããããã®ãï¼ã¾ã åãçµã¾ãã¦ãªãéè¦ãªåé¡ã¯ä½ãï¼ã«ã¤ãã¦è§¦ããé·æããã°ã®ãããªè«æï¼ contributions㯠æ©æ¢°å¦ç¿ã®ç 究ã¨äººé¡ã¨ç§å¦å ¨ä½ã«ããããã£ã¨å¤§ããªç 究ã¨ã®éã«ããæ¬ è½ã«å¯¾ããæ確ãªç¹å®ã¨è§£èª¬ ãã®ã®ã£ããã«åãçµãããã®ç¬¬ä¸æ© (ã©ã訳ãã¦ãããããããªãã£ã) æ©æ¢°å¦ç¿ã«ããã¦éè¦ãªåé¡ã®æ示 æ©æ¢°å¦ç¿ã®ããã®æ©æ¢°å¦ç¿(è¦ç´: ããã·ã¥ã«ã¼ã ãã¢ã¤ã¡ã®åé¡å¨ãæ»ã¬ã»ã©ä½ã£ã¦ä½ã®å½¹ã«ç«ã£ãã®ï¼) ãã³ããã¼ã¯ãã¼ã¿ã®åé¡ ã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}