結晶構造解析
【英】:crystal structure analysis
電子線によるには電子顕微鏡像ではなく電子回折図形が用いられる。その理由は、電子顕微鏡像の空間分解能は、約0.1nmであり、電子回折図形から得られる分解能は0.001nmに達するからである。構造解析の方法には、運動学的回折を適用する方法と動力学的回折を適用する方法がある。前者は軽元素からなる薄い結晶の場合で、動力学効果が無視できる場合に適用される。実際、蛋白などの結晶に対して用いられ、回折図形から各反射の強度を測定し、対応する電顕像をコンピューターを使ってフーリエ変換して、各反射の散乱因子の実部と虚部から位相を求める。それらの強度と位相をフーリエ合成して結晶構造を得る。後者は収束電子回折法を利用して固体材料のナノスケールに用いられる。数10mradの入射角を持つ電子線を試料上の直径10nm以下の領域に照射して、その領域からの回折図形を得る。得られた回折図形は入射角の広がりに対応した2次元的に広がるディスク状の回折図形(2次元的なロッキングカーブ)である。この図形は動力学的効果のために複雑な図形をしており、運動学的回折から期待されるロッキングカーブであるラウエ関数とは大変異なっている。動力学効果を全面的に取り入れた強度計算と実験で得られた図形とのフィッティングから結晶構造が解かれる。回折波の位相は、多重回折のために回折強度に反映されているので、運動学的回折のときのように別途回折波の位相を求める必要はない。収束電子回折法による固体への応用では、結晶の1次構造よりも、局所的な構造や電子状態など2次構造の研究が重要である。実験の方法としては非弾性散乱を取り除くエネルギーフィルタが必要である。第3の近似的方法として、プリセッション法がある。この方法では、プリセッション法すなわち入射ビームをある晶帯軸から数度傾けて円錐状に振って、強い動力学効果を避け、そこから得られる強度を加算する。得られた強度に運動学的理論を適用し、位相の推定にはX線回折法で使われる直接法を用いて、結晶構造を解く。
電子線によるには電子顕微鏡像ではなく電子回折図形が用いられる。その理由は、電子顕微鏡像の空間分解能は、約0.1nmであり、電子回折図形から得られる分解能は0.001nmに達するからである。構造解析の方法には、運動学的回折を適用する方法と動力学的回折を適用する方法がある。前者は軽元素からなる薄い結晶の場合で、動力学効果が無視できる場合に適用される。実際、蛋白などの結晶に対して用いられ、回折図形から各反射の強度を測定し、対応する電顕像をコンピューターを使ってフーリエ変換して、各反射の散乱因子の実部と虚部から位相を求める。それらの強度と位相をフーリエ合成して結晶構造を得る。後者は収束電子回折法を利用して固体材料のナノスケールに用いられる。数10mradの入射角を持つ電子線を試料上の直径10nm以下の領域に照射して、その領域からの回折図形を得る。得られた回折図形は入射角の広がりに対応した2次元的に広がるディスク状の回折図形(2次元的なロッキングカーブ)である。この図形は動力学的効果のために複雑な図形をしており、運動学的回折から期待されるロッキングカーブであるラウエ関数とは大変異なっている。動力学効果を全面的に取り入れた強度計算と実験で得られた図形とのフィッティングから結晶構造が解かれる。回折波の位相は、多重回折のために回折強度に反映されているので、運動学的回折のときのように別途回折波の位相を求める必要はない。収束電子回折法による固体への応用では、結晶の1次構造よりも、局所的な構造や電子状態など2次構造の研究が重要である。実験の方法としては非弾性散乱を取り除くエネルギーフィルタが必要である。第3の近似的方法として、プリセッション法がある。この方法では、プリセッション法すなわち入射ビームをある晶帯軸から数度傾けて円錐状に振って、強い動力学効果を避け、そこから得られる強度を加算する。得られた強度に運動学的理論を適用し、位相の推定にはX線回折法で使われる直接法を用いて、結晶構造を解く。
結晶解析
結晶構造解析と同じ種類の言葉
- 結晶構造解析のページへのリンク