ããã«ã¡ã¯ï¼ãä»æ¥ã®æ¥ä»ã¯ 2020/06/13 ã§ããã20200613 ã¯ç´ æ° ã§ããï¼
ããã«ããã¨ã20200613ã¯ã4ã§å²ã£ã¦1ãã¾ãç´ æ°ãã§ãããããã§ãããããã¼ãã¤ã«ãã§ããï¼
ä¸è¨ã®äºå®ã¯ã大人ã®ããã®æ°å¦æ室ãçµå¶ãã¦ãããåããæ ªå¼ä¼ç¤¾ãããã®Twitterã¢ã«ã¦ã³ãã§ç¥ãã¾ããã
ä»æ¥ã¯6æ13æ¥ã
— åãã@大人ã®ããã®æ°å¦ã»çµ±è¨æ室 (@wakara_nagomi) 2020å¹´6æ13æ¥
å¼ç¤¾è¬å¸«ã®å²¡æ¬ã¯ä¹ ãã¶ãã®ç´ æ°æ¥ã ï¼ã¨é¨ã«ãé¢ããããã³ã·ã§ã³ä¸ãã£ã¦ãã¾ãã
岡æ¬ã20200613ã¯4ã§å²ã£ã¦1ä½ãç´ æ°ã§ããï¼ä¸å¹³æ¹ã®å®çã®çµã«ãªãã¾ããï¼ã¿ã¤ã ãªã¼ï¼ã pic.twitter.com/2Xs1tAu8O9
ãã£ãããªã®ã§ãä»æ¥ã®æ¥ä»ã«é¢ãã¦ãèªåã§ãä½ãçºè¦ãããããªã¨æã£ã¦èãã¦ã¿ãã¨â¦â¦
- 13
- 613
- 20200613
ã®ãããããååæ° ã§ãããã¨ããããã¾ããï¼
å人çã«ã¯ããã®äºå®ã¯ã¨ã¦ãé¢ç½ãã¨æã£ã¦ãã¾ãï¼
ã¨ã¯ããããã®è©±ã®é¢ç½ãã¯ååæ°ã¨ãããã®ãç¥ããªãæ¹ã«ã¯ããªããªãä¼ãããªããã¨æãã¾ãã
ããã§ä»æ¥ã¯ããã®è¾ºã®èæ¯ãå«ãã¦è§£èª¬ãã¦ããããã¨æãã¾ããããã£ããæå¾ã¾ã§ãä»ãåããã ããï¼
ååæ°ã¨ã¯
ã¾ãã¯ãååæ°ã«ã¤ãã¦èª¬æãã¾ããããååæ°ã¨ã¯
ã®ãã¨ã§ããå³ã«è¡¨ãã¨ãããªæãã§ãã
ã§ã¯ããã®ãããªæ°ã¯ã©ããã£ã¦æ¢ãããããã§ããããã
ä¸çªç°¡åãªã®ã¯ããã¿ã´ã©ã¹æ°ããæ¢ããã¨ã§ãããã¿ã´ã©ã¹æ°ã¨ã¯
ãæºãããæ´æ°ãã®çµ ã®ãã¨ã§ãã
æåãªä¾ã¨ãã¦ã¯
ãããã¾ãããããã«ãã£ã¦ã辺ã®é·ãã ã§ãããããªç´è§ä¸è§å½¢
ã»ãã«ãã
ãªã©ã®ãã¿ã´ã©ã¹æ°ããã ãããããååæ°ã§ãããã¨ããããã¾ãã
ãã¿ã´ã©ã¹æ°ã®ãã¹ã¦ã®çµåãã¯ãçè«çã«åæãããã¨ãã§ãã¾ãããããªããã§ãï¼è¾ºããã¹ã¦ãæ´æ°ãã§ãããããªååæ°ã¯æ¯è¼çç°¡åã«è¦ã¤ãããã¨ãã§ãã¾ãã
ä¸æ¹ãï¼è¾ºããã¹ã¦ãæçæ°ãã§ãããããªç´è§ä¸è§å½¢ãã¿ã¤ãããã¨ã¯ã容æã§ã¯ããã¾ããããã®ãã¨ããååæ°ãæ¢ãä¸ã§é常ã«ããã¯ã«ãªãåé¡ã§ãã
ãã¨ãã°ã7 ã¨ããæ°ã¯ååæ°ã§ããããï¼
ç´ æ´ã«èããã¨ãé¢ç©ã7ã«ãªãç´è§ä¸è§å½¢ãè¦ã¤ããã°ããã¨ãããã¨ã«ãªãã¾ãããå®éãããªç´è§ä¸è§å½¢ãè¦ã¤ããã¾ãï¼
ããã§ã¯ã157 ã®å ´åã¯ã©ãã§ããããï¼
ãããã¨ãã§ããªã大ããªå¤ã«ãªã£ã¦ãã¾ããã
ãããªé¢¨ã«ããã¨ã ã®å¤ãå°ããã£ãã¨ãã¦ãããã® ãé¢ç©ã«ãã¤ï¼è¾ºã®æçæ°ã®åæ¯ã»ååããã¨ã¦ã¤ããªã大ãããªãå ´åãããã®ã§ãããããªç¶æ³ã§ååæ°ãæ¢ãã®ã¯è¦å´ãããã§ãã
tsujimotter.hatenablog.com
ååæ°ãå¤å®ããæ¡ä»¶
ããã¾ã§ã®èª¬æã§ã ãååæ°ã§ãããã¨ãå¤å®ãããã¨æã£ãã¨ãã«ãé¢ç©ã ã«ãªããããªç´è§ä¸è§å½¢ãæ¢ãã®ã¯ãã¨ã¦ãå°é£ãªåé¡ã§ãããã¨ãåãã£ããã¨æãã¾ãã
ã¨ãããã§ããè³¢ã人ã¯ãããã®ã§ãä¸è¬ã®æ´æ°ã§ã¯ãªããããç¹å®ã®æ¡ä»¶ãæºããç´ æ°ã«ã¤ãã¦ã¯ãååæ°ã§ãããã¨ãå¤å®ããæ¹æ³ ãç¥ããã¦ããããã§ããWikipediaã®ãååæ°ãã®è¨äºã®ãè¿å¹´ã®é²å±ãã®ç®æãå¼ç¨ãã¾ãããã
é¨åçãªè§£æ±ºã¨ãã¦ã以ä¸ã®äºå®ã証æããã¦ãããããã«ãp ã¯å¥ç´ æ°ã¨ããã
p ã 8 ã§å²ã£ããã¾ãã 3 ã®ã¨ããp ã¯ååæ°ã§ã¯ãªãã2p ã¯ååæ°ã§ããã
p ã 8 ã§å²ã£ããã¾ãã 5 ã®ã¨ããp ã¯ååæ°ã§ããã
p ã 8 ã§å²ã£ããã¾ãã 7 ã®ã¨ããp 㨠2p ã¯ååæ°ã§ããã
ããã¯ããããã§ããï¼
8ã§å²ã£ããã¾ãã§ååæ°ãç°¡åã«å¤å®ã§ãã ã¨ããã®ã§ãããã¡ãããå¿ è¦ååæ¡ä»¶ã§ã¯ãªãã®ã§ãæ¡ä»¶ã«åè´ããã°å¤å®ã§ããã¨ãã話ã§ãããããã§ãããããã¨ã§ãã
è±èªçã®Wikipediaã®æ¹ã«ã¯ãåèæç®ãè¼ã£ã¦ãã¾ããã
Paul Monsky (1990), "Mock Heegner Points and Congruent Numbers", Mathematische Zeitschrift, 204 (1): 45â67, doi:10.1007/BF02570859
ã©ãããã"Mock Heegner Points" ã¨ããéå ·ã使ããããªã®ã§ãããããªãé£ãããã§ãã
ã¨ããããä»åå¤å®ãããç´ æ°
- 13
- 613
- 20200613
ã¯ããã¹ã¦8ã§å²ã£ããã¾ãã5 ã§ãã
å¼ç¨ããäºå®ãä¿¡ãããªãã°ã2çªç®ã®æ¡ä»¶ã«ãã ãã¹ã¦ååæ° ã§ãããã¨ããããã¾ãï¼ï¼
ãã£ãããï¼ï¼ï¼
ããã¼ããã³ã·ã§ã³ãä¸ããã¾ããï¼ï¼ï¼
ç´è§ä¸è§å½¢ã®è¨ç®
ã®ã©ãããååæ°ã§ãããã¨ãããã£ãã®ã§ããããã対å¿ããç´è§ä¸è§å½¢ãæ±ãã¦ã¿ããã¨æãã¾ãã
ããã§ã¯ ãæ¥åæ²ç·ãã¨ããéå ·ã使ãã¾ããããã辺ããã ãã¶é£ãããªãã®ã§ãããè¨ç®ã®æé ã¨ãã¦ã¯ä»¥ä¸ã®éãã§ãï¼
- ãååæ°ã§ãããªãã°ã対å¿ããæ¥åæ²ç· ãç¡éä½æ°ã®æçç¹ãæã¤
- ã®ç¡éä½æ°ã®æçç¹ã®çæç¹ ãæ±ãã¦ããããäºåããç¹ ãè¨ç®ãã
- ãã® ãé©å½ã«å¤æ°å¤æããã¨ãé¢ç©ã ã§ãããããªç´è§ä¸è§å½¢ã®ï¼è¾ºãæ±ã¾ã
詳ããã¯ã以åæ¸ãã以ä¸ã®è¨äºã«æ¸ãã¦ããã®ã§ãèå³ããæ¹ã¯èªãã§ãã ããï¼
tsujimotter.hatenablog.com
ãªããä¸è¨ã®è¨ç®ã¯ãæè¨ç®ã§ã¯ã¨ã¦ã大å¤ã§ããç¹ã«ã ã®çæç¹ãè¨ç®ãããã¼ããé£ããã®ã§ãSagemathã¨ãããã¼ã«ã使ç¨ãããã¨æãã¾ãã以ä¸ã®ãã¼ã¸ãããªã³ã©ã¤ã³ã§ãè¨ç®ãããã¨ãã§ãã¾ãã
ãCoCalc Instant SageWorksheetãã¨ãããã¿ã³ãæ¼ãã¦ãé£ãã å ã§é©å½ã«ã¢ã«ã¦ã³ããä½ã£ã¦è¨å®ãã¦ããã ããã¨ä½¿ããããã«ãªãã¾ãã
ã¨ããããã§ãå®éã«ä»¥ä¸ã®ãããªã³ã¼ãï¼ ã®ã¨ãã®è¨ç®ä¾ï¼ãæã£ã¦ãå®è¡ãã¦ã¿ã¾ãããã
n = 13 # n ã«å¯¾å¿ããæ¥åæ²ç· E_n : y^2 = x^3 - n^2 x E = EllipticCurve([0,0,0,-n^2,0]); E # E ããããã plot(E) # E_n ã®ç¡éä½æ°ã®ç¹ã®çæå ï¼çæå ãåå¨ããã°ãn ã¯ååæ°ï¼ E.gens() # çæå ã P ã¨ãã P = E.gens()[0]; P # P ã®2åç¹ (x : y : 1) ãæ±ããï¼y > 0 ã§ããã°ååæ°ã®ä¸è§å½¢ã«å¯¾å¿ããï¼ Q = 2*P; Q # ç¹ Q ã® x, y 座æ¨ãåãåºã x = Q[0] y = Q[1] # ç´è§ä¸è§å½¢ã®è¾ºã®é·ã (a, b, c) print "" print "ç´è§ä¸è§å½¢ã®è¾ºã®é·ã (a, b, c)" a = sqrt(x+n) - sqrt(x-n); a b = sqrt(x+n) + sqrt(x-n); b c = 2*sqrt(x); c
ãã®ãããªçµæãå¾ããããã¨æãã¾ãã
ä¸çªä¸ã«æ¸ãã¦ããï¼ã¤ã®æ°ããé¢ç©ã13ã«ãªãç´è§ä¸è§å½¢ã®ï¼è¾ºã®é·ãã§ãã
780/323
323/30
106921/9690
å³ç¤ºããã¨ãããªæãã«ãªãã¾ãï¼
ã¡ããã¨ç´è§ä¸è§å½¢ãå¾ããã¾ãããï¼ã
å®éãæ¤ç®ãã¦ã¿ãã¨ãé¢ç©ã¯13ã«ãªããã¨ããããã¾ãããï¼è¾ºã®é·ãã¯ãã¿ã´ã©ã¹ã®å®çã®é¢ä¿å¼ãæºãããã¨ããããã¾ãã
ãããã« 13ã¯ååæ° ã ã£ãã¨ããããã§ãï¼ãé¢ç½ãã§ããï¼ï¼
ãã®èª¿åã§ã ãè¨ç®ãã¦ã¿ã¾ãããï¼
â¦â¦ã¨è¨ãããã¨ããã§ãããæ®å¿µãªãããã®è¾ºãéçã®ããã§ãã
å®éãä¸è¨ã®ããã°ã©ã 㧠ã¨ãã¦å®è¡ãã¦ã¿ãã¨ã次ã®ãããªã¨ã©ã¼ãåºã¦ãã¾ãã
ã¨ã©ã¼ã®åå ã¯ãæ¥åæ²ç· ã®çæç¹ãè¨ç®ããç®æã«ããã¾ãã
çæç¹ãè¨ç®ããã®ã«ã2-descentãã¨ãããããã¾ãé£ããææ³ã使ããã¦ãã¾ãããã®ææ³ã¯ã ã®ãã¤ãã»ã·ã£ãã¡ã¬ããã群 ãèªæã§ãªãã¨ãã«ã¯ããã¾ãæ©è½ããªãã®ã ããã§ããå®éãã¨ã©ã¼ã¡ãã»ã¼ã¸ã«ã¯
This could be because Sha(E/Q)[2] is nontrivial.
ã¨ããã¾ãã®ã§ããã¾ãæ©è½ããªãã±ã¼ã¹ã«å½ã¦ã¯ã¾ã£ã¦ãã¾ã£ãã®ã§ããã
詳ããçè«çãªèæ¯ã¯ããã¡ãã®è¨äºã§èª¬æãã¦ãã¾ãï¼
tsujimotter.hatenablog.com
ãããªããã§ãæ¥åæ²ç· ã®çæç¹ãã©ã¡ããæ±ããããªãã£ãã®ã§ã ã«å¯¾å¿ããç´è§ä¸è§å½¢ã¯è¨ç®ãããã¨ãã§ãã¾ããã§ããã
æ®å¿µã§ã¯ããã¾ããããããããååæ°ã®è¨ç®ã£ã¦é£ããã®ã§ããã
ãããã«
ã¨ããããã§ãä»æ¥ã®æ¥ä»ã§ãã 20200613 ããã¹ã¿ã¼ããã¦ãååæ°ã®æ§è³ªã«ã¤ãã¦ç´¹ä»ãã¾ããã
ä»åã®è¨äºã®é¢ç½ãã¤ã³ãã¯ãï¼ã¤ã®æ° 13, 613, 20200613 ã¯ãã©ãã8ã§å²ã£ã¦5ãã¾ãç´ æ°ãªã®ã§ããã¹ã¦ååæ°ã§ãã ã¨ããç¹ã§ãã
è¨äºã®å¾åã§ã¯ãååæ°ã®å®ç¾©ã«ç«ã¡è¿ã£ã¦ãããããã®æ°ã«å¯¾å¿ããç´è§ä¸è§å½¢ã®å辺ãæ±ãããã¨ã«ãææ¦ãã¦ã¿ã¾ããã13ã«ã¤ãã¦ã¯ç´è§ä¸è§å½¢ã®å辺ãè¦ã¤ãããã¨ãã§ãã¾ãããã
ã«ã¤ãã¦ã¯ãä»åã®ææ³ã§ã¯æ±ãããã¨ãã§ãã¾ããã§ãããéã«ããã¨ãååæ°ã®è¨ç®ãã¨ã¦ãé£ããã¨ãããã¨ã§ãããå¾åãã¿ãã«ã ã«å¯¾å¿ããç´è§ä¸è§å½¢ã®å辺ã¯ãã¨ã¦ã巨大ãªæ°ã®åæ°ã«ãªãã®ããªã¨æãã¾ãã
ã«ãé¢ãããã20200613ãååæ°ãã§ãããã¨ãããã£ã¦ãã¾ãã®ã¯ãå人çã«ã¨ã¦ãããããã¨ã ã¨æãã¾ããæ°å¦ã£ã¦é¢ç½ãããã¤ããè¨äºã®éä¸ã§ç´¹ä»ããäºå®ãç解ã§ããã¨ãããªã¨æãã¾ãã
ã¨ããããã§ãä»æ¥ã¯ãã®è¾ºã§çµããã«ãã¾ããèªãã§ãã ãã£ãã¿ãªãã¾ããããã¨ããããã¾ããï¼
æ°ã«å
¥ã£ã¦ããã ãããããã®è¨äºãã·ã§ã¢ãã¦ããã ããã¨å¬ããã§ãï¼
ããã§ã¯ï¼
追è¨ï¼2020ãååæ°
Oddieããã¨ããæ¹ãã2020ãååæ°ã§ãããã¨ãè¨ç®ãã¦ããã¾ããï¼
åºã¾ããï¼ï¼
— Oddie@21æ以éPC使ç¨ç¦æ¢ (@math_elliptic) 2020å¹´6æ13æ¥
2020ãååæ°ã§ä¸ã®ç´è§ä¸è§å½¢ã®é¢ç©ã«ãªãã¾ã pic.twitter.com/9h52TyCwHZ
ç´è§ä¸è§å½¢ã®ï¼è¾ºãæ±ã¾ã£ãã¿ããã§ããï¼ãããã§
- 6
- 13
- 613
- 2020
- 20200613
ã®ãã¹ã¦ãååæ°ã§ãããã¨ãåããã¾ããï¼ããããï¼ï¼ï¼