tsujimotterのノートブック

日曜数学者 tsujimotter の「趣味で数学」実践ノート

2021-01-01から1ヶ月間の記事一覧

(線形代数・復習)双対空間

前回の記事:tsujimotter.hatenablog.com前回に引き続き、線形代数の復習編の記事です。今回は 双対空間 というものを導入したいと思います。 「線形写像を単体で考えるのではなく、全体を考えるとよい」というモチベーションのもと、 から への -線形写像全…

(線形代数・復習)基底の行き先を与えると対応する線形写像が一意に存在する

最近、「リーマン面」の勉強が「微分形式」の章に差し掛かりました。接ベクトル空間という線形空間や、その双対空間が出てきてまさに線形代数になっています。そんなわけで線形代数の復習として、以下の事実を示したいと思います。斎藤毅先生の「線形代数の…

UFD限定「オイラーの素数生成多項式」の証明

今日は「オイラーの素数生成多項式」についての話です。この多項式に を代入した数はなんと すべて素数 になることが知られています。(素数)(素数)(素数)(素数) を入れると となって合成数になってしまいます。しかしながら、それまでの実に 個もの…

mod mのべき乗余が何通りの値を取るかという話

1つ前の記事に関連して 「 がどんな値をとるのか」 という問題が気になりました。 tsujimotter.hatenablog.com上の記事では のとき のとき となる、つまり の全ての値を取ることを示しました。鯵坂もっちょさんの可視化の方法を用いるならば、右肩上がりの…

「互いに素でない場合」のオイラーの定理

を正の整数としたとき、 を と互いに素な任意の整数としてが成り立つことが知られています。 はオイラーのトーシェント関数といって、この合同式はオイラーの定理として知られています。 これは素数を使った有名な暗号の一つ「RSA暗号」の理論的背景に使われ…

素数生成多項式と虚2次体の類数 (2)

昨日は、オイラーの素数生成多項式に関して「私の発見」を紹介させていただきました。 tsujimotter.hatenablog.com執筆時は、この研究の先行研究にあたるものを発見できず、「先行研究はあるかわからないが独自にこんな発見をした」というスタンスを取ってい…

(独自研究)素数生成多項式と虚2次体の類数

今回の記事は、素数がたくさん登場する多項式に関連する話題です。今回は私がこの式について考えているうちに、思いついて実施してみた独自研究について紹介したいと思います。どこかの本に書いてある話ではないので、誤りを含んでいる可能性も大いにあるか…

「数体の素元星座定理」に関するプレプリントについて

2021年 に入ってすぐに、とんでもないニュースが飛び込んできました。もちろん、数学のニュースです。東北大学の研究チームによる論文のプレプリントがarXivで公開されました。タイトルは "Constellations in prime elements of number fields" で、こちらの…