ãã®è¨äºã¯ 日曜数学 Advent Calendar 2016 ã® 25 æ¥ç®ï¼æçµæ¥ï¼ã®è¨äºã§ãã
ã¢ããã³ãã«ã¬ã³ãã¼æçµæ¥ã§ãï¼æ¥ææ°å¦ã¢ããã³ãã«ã¬ã³ãã¼ã«åå ãã¦ãã ãã£ãã¿ãªãã¾ï¼æ¬å½ã«ãããã¨ããããã¾ããã
ãã¾ãã¾ãªåéã®æ¥½ããã話ãé£ã³åºãã¦ï¼ã¯ã¯ã¯ã¯ããªããæ¯æ¥ãéãããã¨ãã§ãã¾ãããã©ããæ°åãã®å
¥ã£ãé
åçãªè¨äºã°ããã§ãã®ã§ï¼ã¾ã ã覧ã«ãªã£ã¦ããªãæ¹ã¯èªãã§ã¿ã¦ãã ããã
www.adventar.org
æçµæ¥ãªã®ã§ãç´ æ´ãããè¨äºãæ¯ãè¿ã£ã¦çµãããã¨ãã¦ãããã£ãã®ã§ããï¼ã©ããã¦ãã話ãããããããªã話ãã§ãã¦ãã¾ã£ãã®ã§ï¼èªããã¦ãã ããã
èªããããã¨ãå¤ããã¦ï¼ãã¤ãéãé·ãè¨äºã«ãªã£ã¦ãã¾ãã¾ãããï¼ããã£ãããä»ãåããã ããã
ä»æ¥ã®ãã¼ãã¯ç´ å æ°å解
ãã®è¨äºã®ã¿ã¤ãã«ãè¦ã¦ã2017 ã "ç´ å æ°å解" ã ã£ã¦ï¼ããç´ æ°ãªãã ãããã以ä¸ç´ å æ°å解ã§ããããããªããããªããã
ã¨æã£ãããããã¾ãããå®ã¯ãããªã«çªé£ãªãã¨ã§ã¯ããã¾ããã
ãã¨ãã°ï¼ ãã¤ããã°ï¼ ã¯
ã®å½¢ã«å¤å½¢ã§ãã¾ããã
é«æ ¡ã§ç¿ãå æ°å解ã®å ¬å¼ãæãåºãã¦ã¿ã¦ãã ããã
ãã®å¼ã« ãä»£å ¥ããã°ï¼ä¸ã®å¼ã«ä¸è´ãã¾ããã
ãã¦ï¼ ã®ãããªæ°ã "ç´ å æ°" ã¨ã¿ãªãããããé ãæè»ã«èããã°ï¼å¼ ã«ãã£ã¦ã2017 ã "ç´ å æ°å解" ã§ãããã¨ãã£ã¦ãå·®ãæ¯ããªãã§ãããã
æ¬æ¥ã¯æ¡å¤§ããä¸çã«ãããç´ å æ°å解ã®æ³åã¨ããã«ä¼´ã£ã¦å°ãããå¤è§å½¢ã«ã¤ãã¦ã®ã話ã§ããç´ å æ°å解ã®ããããå³å½¢ã®å½¢ã¨ãªã£ã¦ç¾ããã¨ããé¢ç½ãããã²ä½æãã¦ããã ãããã§ãã
ç´ å æ°å解ã®æ³å
é常ã«é¢ç½ããã¨ã«ï¼ãããªé¢¨ã« ãå ã㦠"ç´ å æ°å解" ãã§ããç´ æ°ã¯
ã«éãã¾ããï¼ãã¨ãã° 7 ã¨ã 11 ãå解ãã¦ã¿ã¦ãã ãããã©ããã£ã¦ãå解ã§ããªããã¨ããããã¾ããï¼
ãããï¼ãã®ãã㪠4 ã§å²ã£ã¦ 1 ãã¾ãç´ æ°ã¯ ãã¹ã¦ "ç´ å æ°å解" ã§ããã®ã§ãï¼
ããã ãã§ãååãããã®ã§ããï¼ããã«é¢ç½ã話ãããã¾ãããã® "ç´ å æ°å解" ã¯å³å½¢çã«è§£éå¯è½ãªã®ã§ãã
ä¸è¨ã®ããã« "ç´ å æ°å解" ã§ããç´ æ°ã¯ï¼ãã¹ã¦
ã«ãªãã¾ãã2017 㯠4 ã§å²ã£ã¦ 1 ãã¾ãç´ æ°ãªã®ã§ï¼ä¸è¨ã®ãããªæ³åãå½ã¦ã¯ã¾ãã¨ã¦ãé½åã®ããæ°ãªã®ã§ãã
å®éï¼ä»¥ä¸ã®ãããªç´è§ä¸è§å½¢ãå¾ããã¾ãã
å®ã¯ãã®è©±ã«ã¯ããã«ç¶ãããã£ã¦ï¼ä¸è¬ã« m ã§å²ã£ã¦ 1 ãã¾ãç´ æ° ã¯ï¼ãã¹ã¦ãã®ãããªé¢ç½ãæ³åãä½ããã¨ãã§ãï¼ããã«ä¼´ã£ã¦æ´æ°ã®è¾ºãæã¤å¤è§å½¢ã¨é¢é£ãã¾ãã
2017 ã¯å¤§å¤åã°ãããã¨ã«
ã®å½¢ãããç´ æ°ã§ããã®ã§ï¼ãã®ãããªæ³åã®å®åº«ã¨ãããã§ãããã
ãã¨ãã°ï¼2017 㯠3ã§å²ã£ã¦ 1 ãã¾ãç´ æ° ãªã®ã§ããï¼ãã®ãããªç´ æ°ã¯ãæ´æ°è¾ºãæã¡ éè§ã 120° ã§ããä¸è§å½¢ã®æ辺ãã¨ãªãã¾ãã
ãã®ãããã®è©±ã¯ãæ°è«ã¸ã®æå¾ ãã¨ããæ¬ã«ãè¼ã£ã¦ããã®ã§è¦ããã¨ããæ¹ã¯å¤ãã§ãããã
æ°è«ã¸ã®æå¾ (ã·ã¥ããªã³ã¬ã¼æ°å¦ã¯ã©ã)
- ä½è :å è¤ åä¹
- çºå£²æ¥: 2012/11/27
- ã¡ãã£ã¢: åè¡æ¬ï¼ã½ããã«ãã¼ï¼
ãæ°è«ã¸ã®æå¾ ãã§ã¯ï¼è§å½¢ã®ä¾ãç»å ´ãã¾ããï¼ä»åæ±ã ã¯æ®å¿µãªãã ã§å²ã£ã¦ ãã¾ãç´ æ°ã§ã¯ããã¾ãããæ®å¿µã
ã§å²ã£ã¦ ãã¾ãç´ æ°ã§ãã å¹´ ã¾ã§å¾
ã¡ã¾ãããããã®è¨äºãèªãã 誰ããã®å¹´ã«ç«ã¡ä¼ããã¨ããã®ã ããã
ç´ å æ°å解ããä½ãï¼è§å½¢
ãã¦ãããããæ¬é¡ã§ãã
7 ã§å²ã£ã¦ 1 ãã¾ãç´ æ° ã§ããã 2017 ã¯ï¼
ã«ããªãã¾ãããªãã ãã®æ¡ä»¶ã¯ã¨æãããããã¾ãããï¼ã¾ãèãã¦ãã ããã
ãã®æ³åã¯ã ã§å²ã£ããã¾ãã ã§ããç´ æ°ã¯ï¼ åä½ã§å®å ¨å解ãããã¨ããï¼ååä½ã®é¡ä½è«ã«ããèªç¶ã«å°ããããã®ã§ãã
ã¨ãããï¼ãã®æ³åãç¨ãã¦ã¤ããããï¼è§å½¢ã®å ·ä½ä¾ãè¦ããã¨ãããã¾ããã§ããããã£ã¨ä¸ã«ãããã4 ã§å²ã£ã¦ 1 ãã¾ãç´ æ°ããã3 ã§å²ã£ã¦ 1 ãã¾ãç´ æ°ãã®æ³åã¨æ¯ã¹ã¦ï¼åé¡ãè¤éãããã®ãåå ã§ãããããããï¼æ°ãæããè ã¨ãã¦ã¯ï¼4 ã 3 ã ããç¹å¥æ±ããããããã¾ããã
ã¨ããããã§ï¼ãããã誰ãè¦ããã¨ããªãã§ãããã2017 ã®ç´ å æ°å解ãã¤ããï¼è§å½¢ãã®ä½å³ã«ææ¦ãã¦ã¿ããã¨æãã¾ãã
ã¾ãï¼ ã¯ ã§å²ã£ã¦ ãã¾ãç´ æ°ãªã®ã§ï¼ååä½ã®é¡ä½è«ãã ï¼ï¼ã®åå§ï¼ä¹æ ¹ï¼ã使ã£ã¦ä»¥ä¸ã®ããã« "ç´ å æ°å解" ã§ãã¾ãã
以ä¸ã§ã¯ï¼ãã®ç´ å æ°å解ã®æ³åããï¼2017 ãä¸è¾ºã«æã¤æ´æ°è¾ºï¼è§å½¢ãä½ãæ¹æ³ã解説ãã¾ãã
ã¾ãï¼ä¸ã®ç´ å æ°ã®ä¸ããï¼ã¤é¸ãã§ããã ã¨ãã¾ããããã§ã¯ï¼ï¼çªç®ã¨ï¼çªç®ã¨ï¼çªç®ãé¸ãã§
ã¨ãï¼æ®ãã®ï¼ã¤ãæãåããã¦
ã¨ãã¾ãããã
ããï¼ãã¾ãï¼ã¤ãé¸ã¶ãã¨ãã§ããã°ï¼ 㨠ã¯è¤ç´ å ±å½¹ã«ãªãã¾ããå®éï¼ä¸ã® 㨠ã¯è¤ç´ å ±å½¹ã«ãªã£ã¦ãã¾ãã
å½ç¶ï¼
ã¨ãªã£ã¦ããããã§ããï¼ ã¨ ãè¤ç´ å ±å½¹ã§ããã°ï¼
ãæãç«ã¡ã¾ããã
ããã§ï¼ã¤ããã¾ããªããããã¾ãã
ããï¼
ãæãç«ã¡ã¾ããããã§ï¼ä»¥å¾ ã« ãããããã®ãèãã¾ãï¼çç±ã¯å¾è¿°ï¼ã
ãã® ãå±éããã¨ï¼
ãæãç«ã¡ã¾ããããã§ç®çã®å¼ãå¾ããã¾ããã
絶対å¤ãã¨ãã¨ï¼
ãæãç«ã¡ã¾ãã
ããã®å¼ãä¸ä½ãªããªãã ï¼ã
ã¨ãã声ãèããã¦ãããã§ããï¼ããã§ããå®æãªã®ã§ããå¼ ãå³å½¢çã«è§£éããã¨ï¼ãã®ã¾ã¾ç®çã®ï¼è§å½¢ãåºæ¥ä¸ããã®ã§ãã
å³ã使ã£ã¦èª¬æãã¦ã¿ã¾ãããã
ã¾ãï¼è¤ç´ æ°å¹³é¢ä¸ã« ã¨ããç¹ãæç»ãã¾ããããã¨ï¼ 㨠ãçµã¶ç·åãå¾ããã¾ãï¼ä¸å³ (1) ãåç §ï¼ã
次ã«ï¼ ã« ãå ããç¹ ãæç»ãã¾ããããã¯ï¼é·ã ã®ç·åãï¼å®è»¸ã«å¯¾ã㦠ã ãå転ããã¦ã§ããç·åãï¼ ã«ç¹ãããã¨ã§å¾ããã¾ãï¼ä¸å³ (2) ãåç §ï¼ã
ããã«ï¼ ãå ããç¹ãæç»ãããã®ã§ããï¼ããã¯é·ã ã®ç·åã å転ããã¦ï¼ããã« å転ããããã®ãç¹ ã«ã¤ãªãã¦å¾ããã¾ãã
ãããç¶ãã¦ããã¨ï¼ 以ä¸ã®ãããªï¼ã¤ã®ç¹åãã¤ãªããã¹ãã§ãã¾ãã
ãã¹ãæ§æãããã¹ã¦ã®ç·åã®é·ãã¯ãã¹ã¦æ´æ°ã§ï¼ã¾ããã¹ã¦ã®ç·åå士ã®ãªãè§ãçãããã¨ã«æ³¨æãã¦ãã ããã
ããã«ï¼ãã¹ã®çµç«¯ã®ç¹ ã®åç¹ããã®é·ã㯠ã«ä¸è´ãã¾ãï¼ããã¯å¼ ããæããã§ããï¼ï¼ã
çµè«ã¨ãã¦ï¼å§ç¹ï¼åç¹ï¼ã¨çµç¹ãçµã¶ãã¨ã§ï¼ä»¥ä¸ã®å¤è§å½¢ãã§ããããã¾ãï¼
ããããï¼ ã®ç´ å æ°å解ã®æ³åããèªç¶ã«å°ãããï¼è§å½¢ã§ããã©ãã®æ¬ã«ãè¼ã£ã¦ããªãï¼çè ãªãªã¸ãã«ã®ä½åã§ãã®ã§ï¼ãããã誰ãã¾ã è¦ããã¨ã®ãªãå¤è§å½¢ã§ãããã
ãã£ãããªã®ã§ï¼ç·ã ãã®ãã¼ã¸ã§ã³ãæ²è¼ãã¾ãããã
ä¸ã®ç»å㯠SVG ã¨ãããã¯ã¿ã¼ãã¼ã¿ã®å½¢å¼ãªã®ã§ï¼ãããããªç¨éã«ã使ãã§ãã¾ãããããããã°ï¼2017å¹´ã®å¹´è³ç¶ãªã©ã«ã使ããã ããã
ã»ãã¨ã«ä½ãã¾ãããç¬
2017å¹´ã®å¹´è³ç¶ã§ããï¼ä»åº¦ã® #æ¥ææ°å¦ä¼ ã§é ãã¾ã^_^ pic.twitter.com/rvLJM2e0Dv
— tsujimotter (@tsujimotter) 2017å¹´1æ5æ¥
ä½ãæ¹ï¼ï¼è§å½¢ãä½ãããã®é·ãéã®ãï¼
ï¼è§å½¢ãã§ãããããã§ãããã§ãããã¨2017å¹´ãç· ããããããã¨ãããªã®ã§ããï¼ãã£ã±ãä½ãæ¹ãç¥ãããã§ãããã以ä¸ã§ã¯ãã®ä½ãæ¹ãå ·ä½çã«ã説æãã¾ãããã
å¿ è¦ã«å¿ãã¦èªã¿é£ã°ãã¦ãã ããã
ï¼è§å½¢ãä½ãæ¹æ³ã§ããï¼èãæ¹ãã·ã³ãã«ãªå²ãã«ï¼å®éã«ä½ãã®ã¯å°ãé£ããã§ããåé¡ã¯ããã¤ãã®å°åé¡ã«åºåãã§ãã¾ãã
2017 ãç´ å æ°å解ããæ¹æ³
ã¾ã第ä¸ã«ãã©ããã£ã¦ 2017 ãç´ å æ°å解ããã®ããã¨ããåé¡ãããã¾ãã
å°ãæè¡çãªèª¬æããã¾ãã
ä¸è¬è«ã¨ãã¦ï¼ ã ã® ä¸ã®æå°å¤é å¼ã¨ãï¼ ã®æ´æ°ç° ã ã¨ãªãã¨ãï¼ ä¸ã® ã®ç´ ã¤ãã¢ã«å解ã¯ä»¥ä¸ã®ããã«å¾ããã¾ãã
ã¨ãã表示ã§ä¸ãããã ã® ã§æ¢ç´ãªå¤é å¼ã«ããå解ã ã¨ããã¨ãï¼ ã¯
ã«ãã£ã¦æ¬¡ã®ããã«ç´ ã¤ãã¢ã«å解ããã¾ãã
ã¨ãããï¼ãã®ç´ ã¤ãã¢ã« ã¯åé ã¤ãã¢ã«ã®å½¢ã§ããã¦ãã¾ããã®ã§ï¼ãã®ã¾ã¾ç´ å æ°å解ã®å½¢ã«æã£ã¦ãããã¨ãã§ãã¾ããã
以ä¸ã®æä½ã¯é¢åã ã¨èãã¾ããã®ã§ï¼ãã¨ãªããæ°å¼å¦çã½ãããç¨ãããã¨ã«ãã¾ããã使ã£ãã®ã¯ï¼SageMathã¨ããã½ããã¦ã§ã¢ã§ãã
SageMath ã¯æ°å¦ã®å¹ åºãå¦çãæ±ãæ°å¼å¦çã½ããã¦ã§ã¢ã§ï¼ä»åã®ç®çã§ããã代æ°çæ´æ°è«ãã«é¢ããå¦çãå®è¡ãããã¼ã«ãããããç¨æããã¦ãã¾ãããããï¼ç´ æ´ããããã¨ã«ã½ããã¦ã§ã¢ãã¤ã³ã¹ãã¼ã«ãããã¨ãªãï¼ã¦ã§ãä¸ã§å®è¡ãããã¨ãã§ããã®ã§ãã
SageMathCloudã¨ãããµã¼ãã¹ãããã¾ãã以ä¸ã®ãªã³ã¯ããã¢ã¯ã»ã¹ã§ãã¾ãã
ã¢ã«ã¦ã³ããç»é²ããå¿ è¦ã¯ããã¾ããï¼åºæ¬çã«ç¡æã§å©ç¨ã§ãã¾ãã以ä¸ã®åç»ã« SageMathCloud ãç¨ãã¦è¨ç®ãã¯ãããæé ãç°¡åã«ã¾ã¨ãã¾ããã®ã§ï¼èå³ã®ããæ¹ã¯ã覧ã«ãªã£ã¦ãã ããã
ãã¦ï¼ä»¥ä¸ã§ã¯ SagaMath ã®ã³ãã³ãã使ã£ã¦è§£èª¬ãã¦ããã¾ãã
ã¾ãï¼æçæ°ä½ ã« ãå ããä¸çï¼ä»£æ°ä½ï¼number fieldï¼ãä½ãã¾ããå¤æ°ã¯ ã¨ãã¦ããã¾ãããã
K.<z> = NumberField(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1); K
ãã®ã³ãã³ããæã£ã¦ï¼Shift ãæ¼ããªãã Enter ãã¼ããããã¾ããããããã¨ï¼
Number Field in z with defining polynomial x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
ã®ãããªã¡ãã»ã¼ã¸ãè¿ã£ã¦ãã¾ããããã§ä»£æ°ä½ ãã§ãã¾ããã
ã®æå°å¤é å¼ã¯ ãªã®ã§ï¼ãã®å¼ã NumberField ã¨ããé¢æ°ã®å¼æ°ã«æå®ãã¦ãã¾ãããã®ãããªå¼ãå®ç¾©å¤é å¼ï¼defining polynominalï¼ã¨ããã¾ããã
z ã¨ããã®ã¯ï¼ ã®ãã¨ã表ãå¤æ°ã§ãã代æ°ä½ãå®ç¾©ããéã«ï¼ä»¥ä¸ã®ããã«ãå®ç¾©å¤é å¼ã®æ ¹ããæ示çã«æå®ãããã¨ãã§ãã¾ãã
K.<z>
ãã® z ã ã表ããã¨ã確èªããããã«ï¼ä»¥ä¸ã®ã³ãã³ããæã£ã¦å®è¡ï¼Shift + Enterï¼ãã¦ã¿ã¾ãããã
z^7
ããã¨ï¼ ã¨ããã¡ãã»ã¼ã¸ãè¿ã£ã¦ããã¯ãã§ãã ã確èªã§ãã¾ããã
次ã«ï¼ ã ä¸ã§ "ç´ å æ°å解" ãã¾ãããã
å°ãæè¡çãªæ³¨æãããã¨ï¼ ã®æ´æ°ç°ã¯åé ã¤ãã¢ã«æ´åãªã®ã§ï¼ä¸æã«ç´ å æ°å解ã§ããã®ã§ããï¼ãã®ã½ããã§ã¯æ¨æºçã«ãç´ ã¤ãã¢ã«å解ãããã¾ãããããã£ã¦ï¼å解ããã¦å¾ãããã®ã¯åæ°ã¤ãã¢ã«ï¼fractional idealï¼ã§ãã
I = K.ideal(2017)
I.factor()
(Fractional ideal (z^5 + 2*z^4 + 3*z^3 + 3*z)) * (Fractional ideal (-2*z^5 - 3*z^4 - 3*z^3 - z^2 - 3*z)) * (Fractional ideal (-2*z^5 - z^4 + z^3 - 2*z^2 + z + 1)) * (Fractional ideal (z^5 + 3*z^4 + 3*z^3 + 2*z)) * (Fractional ideal (-z^5 - 2*z^4 - 2*z^3 + z^2 - 2*z + 1)) * (Fractional ideal (3*z^5 + 2*z^3 + 3*z^2 + z))
çµæããï¼ä»¥ä¸ã®ï¼ã¤ã®åæ°ã¤ãã¢ã«ã«å解ããããã¨ããããã§ãããã
(z^5 + 2*z^4 + 3*z^3 + 3*z) (-2*z^5 - 3*z^4 - 3*z^3 - z^2 - 3*z) (-2*z^5 - z^4 + z^3 - 2*z^2 + z + 1) (z^5 + 3*z^4 + 3*z^3 + 2*z) (-z^5 - 2*z^4 - 2*z^3 + z^2 - 2*z + 1) (3*z^5 + 2*z^3 + 3*z^2 + z)
ãããã®ã¤ãã¢ã«ã®çæå ã¯ãã¹ã¦æ´ä¿æ°ã¨ãªã£ã¦ããã®ã§ï¼æ´ã¤ãã¢ã«ã§ããããããåé ã¤ãã¢ã«ã§è¡¨ããã¦ããã®ã§ï¼ãããã®çæå ããã®ã¾ã¾æãåãããã°ï¼2017 ã®åæ°åã®æ°ãã§ããããã¾ãã
å®éï¼
(z^5 + 2*z^4 + 3*z^3 + 3*z)*(-2*z^5 - 3*z^4 - 3*z^3 - z^2 - 3*z)*(-2*z^5 - z^4 + z^3 - 2*z^2 + z + 1)*(z^5 + 3*z^4 + 3*z^3 + 2*z)*(-z^5 - 2*z^4 - 2*z^3 + z^2 - 2*z + 1)*(3*z^5 + 2*z^3 + 3*z^2 + z)
ã®ã³ãã³ããå®è¡ããã¨ï¼
2017*z^5 + 2017*z^4 + 2017*z^3 + 2017*z^2 + 2017*z + 2017
ããªãã¡ï¼
ã¨ãªãã¾ãããã®ï¼
ã®é¨åãåæ°ã«ãªã£ã¦ãã¦ï¼å®é
ãæãç«ã¡ã¾ãï¼æåããããæ¸ãã¦ããããããã®ã«ã»ã»ã»ï¼ã
ã®çµã¿åãã
ãã¦ï¼å¾ãããï¼ã¤ã®ç´ å æ°ã®ä¸ããï¼ã¤ãé¸ãã§ï¼ç©ããã®æ®ãã®ç©ã¨å ±å½¹ã«ãªãããã«ãããã§ãããããã§ï¼ã©ã®ï¼ã¤ãé¸ã¶ã®ãã¨ããæ°ããªåé¡ãç¾ãã¾ãã
ç§ã¯ãã®ããã®ãã¾ãæ¹æ³ãç¥ãã¾ãããé©å½ã«é¸ã¶ããããã¾ããã§ãããé¸ãã ï¼ã¤ã®ç´ å æ°ã®ç©ã ã¨ãã¦ï¼ãã® ãèªä¹ãã¦çµ¶å¯¾å¤ãã¨ãã¾ãããã¾ãããã° ã«ä¸è´ãã¾ãã
ä½åãã®è©¦è¡é¯èª¤ã®ä¸ï¼ãå½ããããå¼ããã¨ãã§ãã¾ããã
A = (z^5 + 2*z^4 + 3*z^3 + 3*z) * (z^5 + 3*z^4 + 3*z^3 + 2*z) * (3*z^5 + 2*z^3 + 3*z^2 + z); A (A^2).abs()
çµæã¯ä»¥ä¸ã§ãã
-11*z^5 + 4*z^4 + 20*z^3 + 34*z^2 - 10*z + 20 2017.00000000000
ãããã«ï¼ ã®çµ¶å¯¾å¤ã ã«ä¸è´ãã¾ããã
ãã¨ã¯ï¼ ãå±éãã¦ãããã°ããã§ãã
A^2
-52*z^5 + 24*z^4 - 651*z^3 + 480*z^2 - 1716*z - 1080
ãã£ãã¼ãããã§ï¼ç®çã®å¼ãå¾ããã¾ããã
ãããåç¯ã§è§£èª¬ããæ¹æ³ã§ãã®ã¾ã¾å³ç¤ºãã¦ããã¾ãããã
æ°å¤ãã¤ãã¦åæãã¦ã¿ã¾ãããã
ãªãã»ã©ãä¿æ°ã«ãã¤ãã¹ãã¤ãã¦ãã¾ãã¨ï¼ç·åã®ä¼¸ã³ãæ¹åãæ³å®ããæ¹åã¨å対ã«ãªã£ã¦ãã¾ãã®ã§ãããã¤ã¾ãï¼å¸å¤è§å½¢ã«ãªããªãã
ã¨ããããã§ï¼ä»åã§ããå®æåã®ï¼è§å½¢ã¯ãã¡ãã§ãã
ã¨ãããã¨ããã§ããï¼ãããªï¼è§å½¢ããæçæã¦ãªãã§ãããã
å¸å¤è§å½¢ã«ããããã«
ããå°ãç¾ããããããå ·ä½çã«ã¯ï¼å¾ãããå¤è§å½¢ãå¸å¤è§å½¢ã«éå®ãããã
æ£ç´ãªã¨ããï¼tsujimotter ã¯ä¸ã®å³å½¢ãç¾ãã段éã§ææ°æ¶æ²ãã¦ãã¾ãããã¾ããï¼ãããªå±éããããªãã¦ãããããªï¼è§å½¢ã¯ä½ããªãã®ãã¨ã
諦ãããã¦ãã tsujimotter ã«ç¥æ§ï¼å è¤å çï¼ãèªãããã¾ããããã§è«¦ãã¦ã¯ãããªãã¨ã
ããã¦ï¼åã³èãå§ãã tsujimotter ã«ã²ãããã訪ãã¾ãã
åæ°ã£ã¦ç´ æ´ããããã§ãããã¤ãã¢ã«ã«åæ°ãã©ããªã«ããã¦ãã¤ãã¢ã«ã¯åãã¾ã¾ã§ããä»åã®ç®çã§ã¯ï¼çµ¶å¯¾å¤ã 2017 ã«ä¸è´ããã°ããããã§ãããï¼ ã«çµ¶å¯¾å¤ã ã§ããåæ°ãããã¦ãåé¡ãªãã®ã§ãã ã®ã¹ãä¹æ ¹ã¯ï¼ã¡ããã©ãããªåæ°ã«ãªã£ã¦ãã¾ãã
åç¯ã®ããã¾ããªããã¨è¨ã£ã¦ããé¨åã¯ãã®ãã¨ã ã£ãã®ã§ãããä¼ç·ååã
ã¨ããããã§ï¼ ã«ï¼ã®ã¹ãä¹æ ¹ ãããã¾ãã£ã¦ï¼ ã®ä¿æ°ããã¹ã¦æ£ã«ãªããã®ãæ¢ãã¾ãããï¼
A = (z^5 + 2*z^4 + 3*z^3 + 3*z) * (z^5 + 3*z^4 + 3*z^3 + 2*z) * (3*z^5 + 2*z^3 + 3*z^2 + z) A^2 (z*A)^2 (z^2*A)^2 (z^3*A)^2 (z^4*A)^2 (z^5*A)^2 (z^6*A)^2
å®è¡çµæã¯ä»¥ä¸ã®ããã«ãªãã¾ãã
-11*z^5 + 4*z^4 + 20*z^3 + 34*z^2 - 10*z + 20 -52*z^5 + 24*z^4 - 651*z^3 + 480*z^2 - 1716*z - 1080 -675*z^5 + 456*z^4 - 1740*z^3 - 1104*z^2 - 24*z - 76 -2196*z^5 - 1560*z^4 - 480*z^3 - 532*z^2 - 456*z - 1131 1080*z^5 + 1028*z^4 + 1104*z^3 + 429*z^2 + 1560*z - 636 76*z^5 - 599*z^4 + 532*z^3 - 1664*z^2 - 1028*z + 52 1131*z^5 - 1065*z^4 - 429*z^3 + 651*z^2 + 599*z + 675 636*z^5 + 1716*z^4 + 1664*z^3 + 1740*z^2 + 1065*z + 2196
æå¾ã®ä¸è¡ãã¿ã¦ãã ããã
636*z^5 + 1716*z^4 + 1664*z^3 + 1740*z^2 + 1065*z + 2196
ããããæ±ãã¦ããããã¹ã¦ã®ä¿æ°ãæ£ã¨ãªãå¼ãã§ããã絶対å¤ãã¨ãã¨
ãç¡äºå¾ããã¾ããã
ãããå³ç¤ºããã°ï¼æ±ãã¦ããæãã¹ãå¸ï¼è§å½¢ãå¾ãããããã§ãã
æå¾ã«ï¼è§å½¢ãéè³ãã¦è§£èª¬ãçµããã«ãã¾ãããã
ãããï¼ããã¾ã§ã®éç¨ãè¸ã¾ããã¨ï¼ãã®ï¼è§å½¢ãæãããè¦ãã¦ãã¾ãããçã¾ãã¦ãã¦ããã¦ãããã¨ãã
ã¾ã¨ã
ãããã¯ã2017ã®ç´ å æ°å解ã®æ³åãããå°ããããæ´æ°ã辺ã«æã¤å¤è§å½¢ãã«ã¤ãã¦ã®ã話ãã§ããã
çµæã¨ãã¦å¾ãããå³å½¢ãã¿ãã ãã§ã楽ããã§ããï¼ãããå°ãéç¨ããªããªãé¢ç½ãã§ããããèæ¯ãç解ããã°ããã»ã©ï¼ç´ å æ°å解ã®æ³åãä¸æè°ã«æãã¾ããï¼ããããå¾ãããå³å½¢ã«æçãçã¾ãããã®ã§ããã¾ãï¼ç´ å æ°å解ã®ãããªï¼æ´æ°ã代æ°ã®æ³åãå³å½¢ã¨ãã¦è§£éã§ããã¨ããçºæ³ã¯é常ã«é¢ç½ãã¨æã£ã¦ãã¦ï¼ãã®èãæ¹ã¯ã»ãã«ããã¾ãã¾ãªå¿ç¨ãããããã§ãããã
ä»åã®ä½åã¯ï¼ä»¥åï¼ãµã¤ã¨ã³ã¹ã¢ã´ã©2016ã¨ããã¤ãã³ãã§ãç´¹ä»ãã¦ãã¾ããã
tsujimotter.hatenablog.com
ãã®ã¨ãã¯ãï¼ï¼åã®ä½åãçæéã§ç´¹ä»ãããã¨ãããã¬ã¼ã³ã ã£ãã®ã§ï¼å³å½¢ã表示ããæéã¯ã»ãã®ä¸ç¬ã§ï¼å°ãéç¨ã¯ã»ã¨ãã©ç´¹ä»ã§ãã¾ããã§ããããã¤ããã£ãã解説ãããã¨æã£ã¦ããã®ã§ããï¼ã¢ããã³ãã«ã¬ã³ãã¼ããã£ããã«ã¾ã¨ãããã¨ãã§ãã¾ããã
è¦å´è©±ãå ¥ãããã¦ï¼éåé·ãè¨äºã«ãªã£ã¦ãã¾ãã¾ãããæå¾ã¾ã§èªãã§ãã ãã£ãçæ§ãããã¨ããããã¾ããã
ä»åç´¹ä»ãã SageMath ã¯é常ã«ä¾¿å©ãªãã¼ã«ãªã®ã§ï¼ãããæ©ä¼ã«ãã²ä½¿ã£ã¦ã¿ã¦ãã ãããï¼
ã§ã¯ã§ã¯ï¼2016 å¹´ããããã¨ããããã¾ããï¼
2017 ã¯ï¼ä»åç´¹ä»ããã»ãã«ãããããé¢ç½ãæ§è³ªãæã£ãæ°ã§ãã®ã§ï¼ã¨ã¦ã楽ããä¸å¹´ã«ãªãããã§ããï¼
2017 å¹´ã楽ããæ¥ææ°å¦ãã¾ãããï¼ããã§ã¯ï¼*1
é¢é£è¨äº
ã ã§å²ã£ã¦ ãã¾ãç´ æ°ã¯ï¼ ãå ããä¸çã§å解ãããã®è§£èª¬è¨äºã§ãã
tsujimotter.hatenablog.com
ååä½ã®ç´ ã¤ãã¢ã«å解ã«ã¤ãã¦ã®ä¸è¬è«ã¯ãã¡ãã
tsujimotter.hatenablog.com
*1:調ã¹ã¦ã¿ã¦é©ããã®ã§ããï¼2017 ã®æ¬¡ã®ç´ æ°ã¯ 2027 ã§ï¼ãªã㨠10 å¹´ãå¾ ããªãã¨ãããªãã®ã§ãããã¿ãªãã 2017 å¹´ã大äºã«éããã¾ããããã