サクサク読めて、アプリ限定の機能も多数!
トップへ戻る
Switch 2
cvgl.stanford.edu
Introduction When humans navigate a crowed space such as a university campus or the sidewalks of a busy street, they follow common sense rules based on social etiquette. In order to enable the design of new algorithms that can fully take advantage of these rules to better solve tasks such as target tracking or trajectory forecasting, we need to have access to better data. To that end, we contribut
ObjectNet3D: A Large Scale Database for 3D Object Recognition We contribute a large scale database for 3D object recognition, named ObjectNet3D, that consists of 100 categories, 90,127 images, 201,888 objects in these images and 44,147 3D shapes. Objects in the images in our database are aligned with the 3D shapes, and the alignment provides both accurate 3D pose annotation and the closest 3D shap
このページを最初にブックマークしてみませんか?
『Stanford Computational Vision and Geometry Lab』の新着エントリーを見る
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く