ã¨ããNBERè«æã上がっているï¼ungated(SSRN)版ï¼ãåé¡ã¯ãAccounting for Individual-Specific Heterogeneity in Intergenerational Income Mobilityãã§ãèè
ã¯Yoosoon Changï¼ã¤ã³ãã£ã¢ã大ï¼ãSteven N. Durlaufï¼ã·ã«ã´å¤§ï¼ãBo Huï¼ã¤ã³ãã£ã¢ã大ï¼ãJoon Parkï¼åï¼ã
以ä¸ã¯ãã®è¦æ¨ã
This paper proposes a fully nonparametric model to investigate the dynamics of intergenerational income mobility for discrete outcomes. In our model, an individualâs income class probabilities depend on parental income in a manner that accommodates nonlinearities and interactions among various individual and parental characteristics, including race, education, and parental age at childbearing. Consequently, we offer a generalization of Markov chain mobility models. We employ kernel techniques from machine learning and further regularization for estimating this highly flexible model. Utilizing data from the Panel Study of Income Dynamics (PSID), we find that race and parental education interact with parental income in childrenâs economic prospects in ways that can create bottlenecks in mobility.
ï¼æ訳ï¼
æ¬ç¨¿ã¯ãé¢æ£çãªçµæã«ã¤ãã¦ã®ä¸ä»£éã«ãããæå¾ã®ç§»åæ§ã®åå¦ã調ã¹ããããå®å ¨ã«ãã³ãã©ã¡ããªãã¯ãªã¢ãã«ãæ示ãããæã ã®ã¢ãã«ã§ã¯ãå人ãããæå¾é層ã«ãã確çã親ã®æå¾ã«å·¦å³ãããããã®éãéç·å½¢æ§ããªãã³ã«äººç¨®ãæè²ãåè²ã¦æã®è¦ªã®å¹´é½¢ã¨ãã£ãå種ã®å人ã¨è¦ªã®ç¹æ§ã®éã®ç¸äºä½ç¨ã許容ãããçµæã¨ãã¦æã ã¯ãä¸è¬åããããã«ã³ãé£é移åæ§ã¢ãã«ãæ示ãããæã ã¯ããã®æè»æ§ã®é«ãã¢ãã«ãæ¨è¨ããããã«ãæ©æ¢°å¦ç¿ã®ã«ã¼ãã«æ³ããã®ä»ã®æ£ååãé©ç¨ãããæå¾æ¨ç§»ã®ããã«èª¿æ»ï¼PSID*1ï¼ã®ãã¼ã¿ãç¨ãã¦æã ã¯ã人種ã¨è¦ªã®å¦æ´ã親ã®æå¾ã¨ç¸äºä½ç¨ãã移åæ§ã«ããã«ããã¯ãããããå½¢ã§åä¾ã®çµæ¸çå±æã«å½±é¿ãããã¨ãè¦ãåºããã