説ãæ å¨è»¢åéåã¨è¨³ãããããã¨ãã¨ã¯å¤©å説ã§ææã®éè¡ã説æããããã«èããããéåã天å説ã§ã¯å¾åã®ä¸ã転ããå¨è»¢åã«ææãä¹ã£ã¦ããã¨èãããç¾å¨ã¯åç¤éæ²³å ãéè¡ããææãéçåç¤å ã®ã¬ã¹ã«éåã«é©ç¨ãããããããã®ææãã¬ã¹ã¯ã»ã¼åéåãã¦ããã¨ã¿ãªããããå転é¢å ãéç´æ¹åã«å°ããæ¯åãã¦ããããã®æ¯åã®ãã¡ãå転é¢å ã®ãã®ãã¨ããµã¤ã¯ãªãã¯éåã¨å¼ã¶ããã®æ¯åã®è§é度ã§ããã¨ããµã¤ã¯ãªãã¯æ¯åæ°ï¼epicyclic frequency, $\kappa$ï¼ã¯å転è§é度 $\Omega$ ã¨å転軸ããã®è·é¢ $\varpi$ ã®é¢æ°ã¨ãã¦ã $$ \kappa^2 = \frac{1}{\varpi ^3} \frac{{\rm d}(\varpi ^4 \Omega ^2)}{{\rm d}\varpi} $$ ã¨è¡¨ãããã
{{#tags}}- {{label}}
{{/tags}}