ç¸å¯¾æ§çè«ãï¼å°ãã ãéã£ãè§åº¦ããçºãã¦ï¼ç解ããããã®åºæ¬äºé ãï¼æ°å¼ãçç¥ããã«ã¾ã¨ãã¦ã¿ã¾ãããã¾ãï¼å¨è¾ºç¥èã¨ãã¦ï¼å¦é¨1å¹´çãã2å¹´çåãã®æ å½ææ¥ï¼é»ç£æ°å¦ï¼ç工系ã®æ°å¦ B ããã³ Cï¼ã³ã³ãã¥ã¼ã¿æ¼ç¿ï¼ã®è¬ç¾©ãã¼ãã Web ãã¼ã¸ã¨ãã¦å ¬éãã¦ãã¾ãã â ãã¼ã¬ã³ãå¤æã«ãããªãç¹æ®ç¸å¯¾è«ã®çµ±ä¸çç解æéã®é²ã¿æ¹ãå¤ããã®ã¯ï¼ç¹æ®ç¸å¯¾è«çå¹æã ãã§ã¯ãªãããã¹ã«ã¤ããªã¼å±æå°ã¨å°ä¸ã®æéã®é²ã¿æ¹ã®éããã®ããã«ï¼éåããã³ã·ã£ã«ã®éãã«ããä¸è¬ç¸å¯¾è«çå¹æãï¼GPSè¡æã«æè¼ãããæè¨ã®åé¡ã®ããã«ï¼éåã«ããç¹æ®ç¸å¯¾è«çå¹æã¨éåã«ããä¸è¬ç¸å¯¾è«çå¹æãã¨ãã«ãããããå ´åãããã ä¸æ¹ã§ï¼ãã¼ã¬ã³ãå¤æã使ããã®ã¯ï¼éåãé¢ä¸ããªãç¹æ®ç¸å¯¾è«ã®å ´åã®ã¿ã§ãããã§ããã°ï¼GPS è¡æã®æè¨ã®åé¡ã®ãããªï¼éååã³éåã«ããå¹æã®çµ±ä¸çç解ã®ããã«ã¯ï¼ã¾ãç¹æ®ç¸å¯¾è«ã«
ã¬ã³ãé¢æ°ã¯ï¼å®é¨ãæ£ã®è¤ç´ æ° zzz ã«å¯¾ãã¦ï¼ Î(z)=â«0âtzâ1eâtdt \Gamma(z)= \int_0^{\infty} t^{z-1} e^{-t}dt Î(z)=â«0ââtzâ1eâtdt ã¨å®ç¾©ããã¾ãããã®ç©åã¯å®éã«åæï¼ç¹ã«çµ¶å¯¾åæï¼ãï¼Î(z)\Gamma (z)Î(z) ã¯æ£åé¢æ°ã¨ãªãã¾ãã â ã³ã¼ã·ã¼ã®ç©åå ¬å¼ã¨ãã®å¿ç¨ï½ã°ã«ãµã®å®çã»ã¢ã¬ã©ã®å®ç ã¬ã³ãé¢æ°ã®æ§è³ª ã¬ã³ãé¢æ°ï¼éä¹ã®ä¸è¬åï¼ã®å®ç¾©ã¨æ§è³ª ã§ã¯å®æ°ä¸ã§å®ç¾©ãããã¬ã³ãé¢æ°ã®æ§è³ªãç´¹ä»ãã¾ããã ãããã®æ§è³ªã¯è¤ç´ æ°å¤ã§ãæç«ããã®ã§ããããã çãã¯Yesã§ããããã¯ä¸è´ã®å®çã®1çªã®ãDDDãããå®é¨ãæ£ã®è¤ç´ å¹³é¢ãï¼ãç·åãããå®è»¸ãã«ç½®ãæãããã¨ã§æç«ãã¾ãã ã¬ã³ãé¢æ°ã®æ¡å¼µ1 ã¬ã³ãé¢æ°ã®æ§è³ª2 Î(x+1)=xÎ(x) \Gamma (x+1) = x \Gamma
æ°å¤è§£æã«ããã¦ã«ã³ã²ï¼ã¯ãã¿æ³ï¼è±: RungeâKutta methodï¼ã¨ã¯ãåæå¤åé¡ã«å¯¾ãã¦è¿ä¼¼è§£ãä¸ãã常微åæ¹ç¨å¼ã®æ°å¤è§£æ³ã«å¯¾ããç·ç§°ã§ããããã®ææ³ã¯1900å¹´é ã«æ°å¦è ã«ã¼ã«ã»ã«ã³ã²ã¨ãã«ãã£ã³ã»ã¯ãã¿ã«ãã£ã¦çºå±ãè¦ãã ä¸é£ã®ã«ã³ã²ï¼ã¯ãã¿å ¬å¼ã®ä¸ã§æãåºãç¥ããã¦ããã®ããå¤å ¸çã«ã³ã²=ã¯ãã¿æ³ (RK4ããããã¯åã«ç義㮠ã«ã³ã²=ã¯ãã¿æ³ãè±: the (classical) RungeâKutta method) ãªã©ã¨å¼ã°ãã4次ã®å ¬å¼ã§ããã 次ã®åæå¤åé¡ãèããã ä½ããy(t) ãè¿ä¼¼çã«æ±ãããæªç¥é¢æ°ã§ããããã® t ã«ãããå¾é 㯠f(t, y) ã«ãã£ã¦ t åã³ y(t) ã®é¢æ°ã¨ãã¦ä¸ãããã¦ãããæå» t0 ã«ãããåæå¤ã¯ y0 ã§ä¸ãããã¦ããã ä»ãæå» tn ã«ãããå¤ yn = y(tn) ãæ¢ç¥ã®ã¨ããååã«å°ããªã¹ããã
åæ¯åã®ã©ãã©ã¹å¤æã«å¼ãç¶ããä»åã¯æ¸è¡°æ¯åã®ã©ãã©ã¹å¤æãèãã¾ããç¹æ§æ¹ç¨å¼ãç¨ããæ¸è¡°æ¯åã®è§£æ³ã«ã¤ãã¦ã¯ãã¡ãã§èª¬æãã¦ãã¾ãããã©ãã©ã¹å¤æã«ããæ¸è¡°æ¯åãèãããã¨ãä»åã®ãã¤ã³ãã¨ãªãã¾ãããªããä»å解ã対象ã¨ãªãã®ã¯ä»¥ä¸ã«...
ç´¹ä» ä»åã¯ã¡ãã£ã¨èéã«ããã¦,è¤ç´ å¹³é¢ä¸ã§ãã¤ã©ã¼å±éã§ãããã¨ã®å¹è½ã«ã¤ãã¦è©±ãã¦ãããã.ãä¸è´ã®å®çãã¨å¼ã°ããã¡ãã£ã¨é©ããããªå®çããã£ã¦,ãã®è¨¼æã«ãã¤ã©ã¼å±éãæ´»èºããã®ã§ãã. ä¸è´ã®å®çã¨ã¯,ããé åã§æ£åãª,ä¸è¦ããã¨ããç°ãªãããã«è¦ããäºã¤ã®é¢æ°ããã£ã¦,ãã®é åå ã®ã»ãã®çãç·ä¸ã§äºã¤ã®é¢æ°ãä¸è´ãããã¨ã確ããããããªã,ãã®é åã®å ¨ä½ã§äºã¤ã®é¢æ°ã¯ä¸è´ãããã¨ãè¨ããã¨ãããã®ã§ãã. ãããèãã¦èª°ããé©ãã¹ããªã®ãã©ããã¯ç§ã«ã¯åãããªã.ããµã¼ããã¨æãã ãã§ãæ§ããªããããªæ°ããã.æ£ç´ãªã¨ãã,ããããã¨ã®ãããªæ°ãããã,å½ããåã®ãã¨ã®ãããªæ°ããã.ããã¾ãã¾ã»ãã®ä¸ã¶æã§ä¸è´ãã¦ãé¨åããã£ãããã¨è¨ã£ã¦,å ¨ä½ãçãããªã£ã¦ããªãã¦,è¤ç´ å¹³é¢ä¸ã®é¢æ°ã¨ããã®ã¯ããã«æ£åæ§ã«ç¸ããã¦ãããã¨ãï¼ãã¨é©ãã®ãæ£è§£ãªã®ã ãã.ããããä¸ã¶æã¨ã
ç´ æ°ã®åå¸ã¨ãªã¼ãã³äºæ³ã®ã¤ãªãã ãç´ æ°ãã¨èãã¨ãããããã¡ã®çæ´»ã¨ããé¢ãããã®ã®ããã«æãããããããã¾ãããããããå®ã¯æ å ±ç¤¾ä¼ãæãç«ã¤ããã«ã¯ç´ æ°ãç¡ãã¦ã¯ãªããªãåå¨ã§ãããéä¿¡ã®å®å ¨æ§ã¯ç´ æ°ã«ãã£ã¦ä¿ããã¦ããã®ã§ãã æ¬ç¨¿ã§ã¯ããããªç´ æ°ãé ããä¸æè°ãªä¸çã«ã¤ãã¦æ°çå¦ç 究é¢ã®ã¢ã ã¤ã«ã ã¹ãªã¢ã¸ã£ã¤å çã«è§£èª¬ãã¦ããã ãã¾ããç´ æ°ã¨ã¯ä½ãªã®ã? ã©ããããããããããã®ã? ã¨ããç´ æ´ãªçåããã¯ããã¦ããç´ æ°ã®åå¸ãã¨æ°å¦çã®æªè§£æ±ºåé¡ããªã¼ãã³äºæ³ãã®ã¤ãªãããå çãèªèº«ã®ç 究ã«è³ãã¾ã§ãã¯ã¯ã¯ã¯ãããããªæ°å¦ã®ç©èªã¸ã¨é£ã³è¾¼ãã§ã¿ã¾ãããã ã¢ã ã¤ã«ã ã¹ãªã¢ã¸ã£ã¤ï¼æ°çå¦ç ç©¶é¢ æ°å¦é¨éï¼ æ§æï¼ç³äº åªå¤§ ï¼çå¦ç 究é¢ï¼ ç´ æ°ã«æ¯ããããç§ãã¡ã®çæ´» æå·çè«ã¨ã®é¢ãã å³1ï¼ç´ æ°ã¨æå·çè« (ã¤ã¡ã¼ã¸å³)ãhttps://pixabay.com/ja
ä¸è±é»æ©ã°ã«ã¼ãã®ã½ããã¦ã¨ã¢è¨è¨ä¼ç¤¾6社ãçµå¶çµ±åãã 2022å¹´4æ1æ¥ããä¸è±é»æ©ã½ããã¦ã¨ã¢æ ªå¼ä¼ç¤¾ãã¨ãã¦çºè¶³ãããã¾ããã 社é·æ¨æ¶
åæ±å¨ãã®ã«ã«ãã³æ¸¦åããã®ç¾è±¡ã¯åæ±å¨ãã§èµ·ããããã¹ã¦ã®æµä½ã«ã¤ãã¦ãåæ±ãµã¤ãºã¨æµä½é度ã¨ã®ç©ãåç²æ§ä¿æ°ã§å²ã£ããã®ããã¤ã¾ãã¯ã¬ã¤ãã«ãºæ°ã40ãã103ã®ã¨ãã«è¦ããã[1]ã ã¬ã¤ãã«ãºæ°ï¼ã¬ã¤ãã«ãºãããè±: Reynolds numberãReï¼ã¯æµä½åå¦ã«ããã¦æ £æ§åã¨ç²æ§åã¨ã®æ¯ã§å®ç¾©ãããç¡æ¬¡å éã§ãããæµãã®ä¸ã§ã®ããã2ã¤ã®åã®ç¸å¯¾çãªéè¦æ§ãå®éãã¦ããã æ¦å¿µã¯1851å¹´ã«ã¸ã§ã¼ã¸ã»ã¬ããªã¨ã«ã»ã¹ãã¼ã¯ã¹ã«ããç´¹ä»ãããã[2]ãã¬ã¤ãã«ãºæ°ã¯ãªãºãã¼ã³ã»ã¬ã¤ãã«ãº (1842å¹´ - 1912å¹´) ã®åã«ã¡ãªãã§åã¥ãããã¦ããã1883å¹´ã«ãã®å©ç¨æ³ã«ã¤ãã¦æ®åããã[3][4]ã æµä½åå¦ä¸ã®åé¡ã«ã¤ãã¦æ¬¡å 解æãè¡ãå ´åã«ã¯ã¬ã¤ãã«ãºæ°ã¯ä¾¿å©ã§ãããç°ãªãå®é¨ã±ã¼ã¹éã§ã®åå¦çç¸ä¼¼æ§ãè©ä¾¡ããã®ã«å©ç¨ãããã ã¾ããã¬ã¤ãã«ãºæ°ã¯å±¤æµãä¹±æµã®ããã«ç°ãª
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}