åãã« ãã®è¨äºã¯ãMachine Learning Advent Calendar 2016 5æ¥ç®ã®è¨äºã§ãã è¤æ°ã®å¦ç¿å¨ï¼å¼±å¦ç¿å¨ãweak learnerï¼ãçµã¿åããã¦ããããæ§è½ã®é«ãå¦ç¿å¨ï¼å¼·å¦ç¿å¨ãstrong learnerï¼ãä½ããã¢ã³ãµã³ãã«å¦ç¿ã®ææ³ã®ä¸ã¤ããã¼ã¹ãã£ã³ã°ã ãã®ä¸ã§ã代表çãªãAdaBoostã PRMLæ¬ã«ãè¼ã£ã¦ããï¼æ¥æ¬èªçä¸å·»p.374ï¼ãã°ã°ãã°å®è£ ä¾ããããã§ãåºã¦ãã¾ãããã©ãå¼±å¦ç¿å¨ã¨ãã¦ä¸çªåç´ãªæ±ºå®æ ªï¼decision stumpï¼ãç¨ããä¾ã°ããã ãããä»ã®ãã®ã«å¤ããããæ§è½ã«ã©ãå½±é¿ããããæãã¤ãã§å®é¨ãã¦ã¿ã¾ããã1 å®é¨ç°å¢ Mac OSX 10.11.6 Core i7 3.1GHz / 16GB RAM Julia v0.5.0 IJuliaï¼Julia ã® Jupyter ã«ã¼ãã«ï¼ãGadflyï¼Juli
æ£è§£ç (精度, accuracy)ï¼æ£ãè² ã¨äºæ¸¬ãããã¼ã¿ã®ãã¡ï¼å®éã«ããã§ãããã®ã®å²å \[\mathrm{Accuracy}=\frac{TP+TN}{TP+FP+TN+FN}\] é©åç (precision)ï¼æ£ã¨äºæ¸¬ãããã¼ã¿ã®ãã¡ï¼å®éã«æ£ã§ãããã®ã®å²å \[\mathrm{Precision}=\frac{TP}{TP+FP}\] åç¾ç (recall, æåº¦, sensitivity)ï¼å®éã«æ£ã§ãããã®ã®ãã¡ï¼æ£ã§ããã¨äºæ¸¬ããããã®ã®å²å \[\mathrm{Recall}=\frac{TP}{TP+FN}\] ç¹ç°åº¦ (specificity)ï¼å®éã«è² ã§ãããã®ã®ãã¡ï¼è² ã§ããã¨äºæ¸¬ããããã®ã®å²å \[\mathrm{Specificity}=\frac{TN}{FP+TN}\] Få¤ (F尺度, F-measure)ï¼åç¾çã¨é©åçã®èª¿åå¹³åï¼ \[\
æ©æ¢°å¦ç¿ã¢ãã«ã«ããã¦ã人éã«ãããã¥ã¼ãã³ã°ãå¿ è¦ãªãã©ã¡ã¼ã¿ããã¤ãã¼ãã©ã¡ã¼ã¿ã¨å¼ã¶ã ãã¤ãã¼ãã©ã¡ã¼ã¿ããã¥ã¼ãã³ã°ããããæ¹ã¯è²ã ã¨ããã ä¾ãã°ãè¯ããããªãã©ã¡ã¼ã¿ã®çµã¿åãããå ¨ã¦è©¦ãã°ãªãããµã¼ãããç¡ä½çºã«è©¦ãã©ã³ãã ãµã¼ããªã©ã ä»åã¯ãããã¨ã¯ã¡ãã£ã¨éã£ããã¤ãºæé©åã¨ããããæ¹ã試ãã¦ã¿ãã ãã¤ãºæé©åã§ã¯ãéå»ã®è©¦è¡çµæããæ¬¡ã«ä½å¦ã調ã¹ãã°è¯ããã確çåå¸ã¨ç²å¾é¢æ°ã«ãã¨ã¥ãã¦æ±ºããã ããã«ãããæ¯è¼çå°ãªã試è¡åæ°ã§ããåªãããã¤ãã¼ãã©ã¡ã¼ã¿ãé¸ã¹ãã¨ãããã Python ã§ãã¤ãºæé©åãããããã®ããã±ã¼ã¸ã¨ãã¦ã¯ Bayesian Optimization ã skoptãGPyOpt ãªã©ãããã ä»åã¯ããã®ä¸ã§ã Bayesian Optimization ã使ã£ã¦ã¿ããã¨ã«ããã 使ã£ãç°å¢ã¯æ¬¡ã®éãã $ sw_vers Produ
Note Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder Nested versus non-nested cross-validation# This example compares non-nested and nested cross-validation strategies on a classifier of the iris data set. Nested cross-validation (CV) is often used to train a model in which hyperparameters also need to be optimized. Nested CV estima
注ç®ãã¦ããç»ç´ ã¨ãã®è¿åã®ç»ç´ ã®æ¿åº¦å¤ã«ãããéã¿ä»ãããããã¨ããããã®åãã¨ã£ã¦ã注ç®ãã¦ããç»ç´ ã®æ°ããæ¿åº¦å¤ã¨ãããããªå¦çãè¿åå¦çã¨ããã¾ãããã®ã¨ããéã¿ä»ãã«ç¨ããå¤ã¯ããªãã¬ã¼ã¿ãªã©ã¨å¼ã°ãã¾ããä»åã¯ã3Ã3 ã®è¿åé åãç¨ãã空éãã£ã«ã¿ã«ã¤ãã¦èãã¦ãããã¨ã«ãã¾ãã æ³¨ç®ãã¦ããç»ç´ ã®æ¿åº¦å¤ã f (i , j ) ã¨ããã¨ãå¦ç対象ã¨ãªãæ¿åº¦å¤ã¯ã表.2(a)ã®ããã«ãªãã¾ããã¾ãããªãã¬ã¼ã¿ a (k , l ) ã¯è¡¨.2(b)ã«ç¤ºãã¾ãã
SIFT (Scale-Invariant Feature Transform, ã¹ã±ã¼ã«ä¸å¤ã®ç¹å¾´å¤æ)ã®ç´¹ä»Â¶ çè«Â¶ åè: è¤åæ°ã«ããSIFTã®ç´¹ä»ãåããããã ããã¾ã§ã®ç« ã§ãHarrisã®ææ³ãªã©ã®ã³ã¼ãã¼æ¤åºã®æ¹æ³ãå¦ãã ããããã®ææ³ã¯å転ä¸å¤ã§ãã£ããã¤ã¾ããç»åãå転ãã¦ãã¦ããåãã³ã¼ãã¼ãè¦ã¤ããããææ³ã§ãã£ããç»åãå転ãã¦ãã³ã¼ãã¼ã¯ã³ã¼ãã¼ã®ã¾ã¾ãã¨ããã®ã¯æããã§ãããããããã¹ã±ã¼ã«ï¼æ¡å¤§ç¸®å°ï¼ã«ã¤ãã¦ã¯ã©ãã§ãããããç»åãæ¡å¤§ç¸®å°ãããããã³ã¼ãã¼ã¯ã³ã¼ãã¼ã§ãªããªã£ã¦ãã¾ããªãã ããããä¾ãã°ä¸ã®ç»åãè¦ã¦ã¿ãããå·¦ã®ç»åã«ããå°ããªã¦ã£ã³ãã¥ã®ä¸ã®ã³ã¼ãã¼ãå³å³ã®ããã«æ¡å¤§ããã¦ãããããã§å³å³ã®ç»åãåããµã¤ãºã®ã¦ã£ã³ãã¥ã§ã¤ãã¤ãåãåºãã¦è¦ã¦ããã¨ããã¯ãã³ã¼ãã¼ã¯ãªããªã£ã¦ããããã®ãã¨ããæãããªããã«ãHarrisã®æ¹æ³ã¯ã¹ã±ã¼ã«
ä»åã¯ããã¤ãã¼ãã©ã¡ã¼ã¿é¸ã³ãå«ãæ©æ¢°å¦ç¿ã¢ãã«ã®äº¤å·®æ¤è¨¼ã«ã¤ãã¦æ¸ãã¦ã¿ãã ãã®ã¨ãã交差æ¤è¨¼ã®ããæ¹ãã¾ããã¨æ±åæ§è½ãæ¬æ¥ãããé«ãè¦ç©ãã£ã¦ãã¾ãæããããã æ±åæ§è½ã¨ããã®ã¯ãæªç¥ã®ãã¼ã¿ã«å¯¾å¦ããè½åã®ãã¨ãæãã ããããã«ãããã¢ãã«ãå®ç°å¢ã«æå ¥ãã¦ã¿ããæ³å®ãããæ§è½ãåºãªã (Underperform) ã¨ãããã¨ãèµ·ããã ãããé²ãã«ã¯ã交差æ¤è¨¼ã®ä¸ã§ã Nested Cross Validation (Nested CV) ããã㯠Double Cross Validation ã¨å¼ã°ããææ³ã使ãã ãã¤ãã¼ãã©ã¡ã¼ã¿ã®é¸ã³æ¹ã¨ãã¦ã¯ãè²ã ãªçµã¿åãããã¨ã«ãã試ãã°ãªãããµã¼ãã¨ããæ¹æ³ãä¾ã«ããã ã¾ããã¢ãã«ã®ã¢ã«ã´ãªãºã ã«ã¯ãµãã¼ããã¯ã¿ã¼ãã·ã³ã使ã£ãã ããã¯ããµãã¼ããã¯ã¿ã¼ãã·ã³ã¯ãã¤ãã¼ãã©ã¡ã¼ã¿ã®å¤æ´ã«å¯¾ãã¦ææãªå°è±¡ãããããã
æè¿ãæ å ±ãè¨é²ããã®ã« Obsidian ã使ãå§ããã ãã ã使ãå§ããä¸ã§åé¡ãä¸ã¤ãã£ãã ããã¯ãè¤æ°ã®ããã¤ã¹ã§ãã¼ã¿ãåæããæ¹æ³ã«ã¤ãã¦ã Obsidian ã¯ãåºæ¬çã«ãã¼ã«ã«ã®ãã¡ã¤ã«ã·ã¹ãã ã§ Markdown ã管çããã ãã®ãããè¤æ°ã®ããã¤ã¹ã§ãã¼ã¿ãåæãããå ´åã«ã¯ããã®æ¹æ³ãèããå¿ è¦ãããã å ¬å¼ã«ã¯ Obsidian Sync ã¨ããåæã®ããã®ãµã¼ãã¹ããããã®ã®æé¡ã§æéããããã ã¾ãã¯ããã¡ãã£ã¨æ°è»½ã«å§ãããã£ãã®ã§ããã以å¤ã®é¸æè¢ãæ¤è¨ãå§ããã ããã¦ãã²ã¨ã¾ã GitHub ã«ãã©ã¤ãã¼ããªãã¸ããªãä½ã£ã¦ç®¡çããæ¹æ³ã«è½ã¡çããã ãã®ããæ¹ã«ã¯ã次ã®ãããªå©ç¹ãããã¨æãã è¤æ°ã®ç°ãªããã©ãããã©ã¼ã ã®ããã¤ã¹ã§åæãããã ãã¡ã¤ã«ã®ä¸ä»£ç®¡çãã§ãã ä»åã¯ããã®ããæ¹ã§ Android ã使ã£ã¦ãã¼ã¿ (Vault) ãå
16æ¥ææ©ããå¤§éª å¹ç°å¸ã®äº¤çªåã§26æ³ã®ç·æ§å·¡æ»ãç·ã«å ä¸ã§è¸ãåºããã¦æè䏿ã®éä½ã¨ãªã£ã¦ãã¾ããç·ã¯å·¡æ»ã®æ³éã奪ã£ã¦éèµ°ãã¦ãã¦ãè¦å¯ã¯äº¤çªã®é²ç¯ã«ã¡ã©ã«è¨é²ãããä¸å¯©ãªç·ã®ç»åãå ¬éããæ å ±ã®æä¾ãæ±ããã¨ã¨ãã«ä¸è¦ä¸æ¥ã®å¤åºãæ§ããããä»è¿ã®ä½æ°ã«å¼ã³ããã¦ãã¾ãã 16æ¥ååï¼æåãããå¤§éª å¹ç°å¸ã®åé山交çªåã®è·¯ä¸ã§ãå¤ç¬é´ä¹ä½å·¡æ»ï¼26ï¼ãå·¦è¸ã«å ä¸ãåºãã£ãç¶æ ã§åãã¦ããã®ããè¿ãã®é§ ã®é§ å¡ãè¦ã¤ãã¾ããã å¤ç¬å·¡æ»ã¯åç©ã使ã£ãåãã¤ããªã©ã«åããããã®ãé²åãã¹ããã身ã«ã¤ãã¦ãã¾ããããä½ãè¤æ°ç®æåºããã¦ãã¦æè䏿ã®éä½ã ã¨ãããã¨ã§ãã è¦å¯ã«ããã¾ãã¨ãå·¡æ»ãææãã¦ããï¼çºã®å¼¾ãå ¥ã£ãæ³éããå¼·å¥ªé²æ¢ç¨ã®éå ·ã®ããã¯ãå¤ãã奪ãããã¨ãããã¨ã§ãè¦å¯ã¯å¼·ç殺人æªéäºä»¶ã¨ãã¦éèµ°ããç·ã®è¡æ¹ãææ»ãã¦ãã¾ãã ããã¾ã§ã®èª¿ã¹ã«ããã¾ãã¨ã彿ã交çª
ããããã¯ããã¾ã§è¿°ã¹ã¦ãããµãã¼ããã¯ã¿ã¼ãã·ã³ã«ã«ã¼ãã«æ³ãé©ç¨ãããã¨ã«ããéç·å½¢ãµãã¼ããã¯ã¿ã¼ãã·ã³ã¸æ¡å¼µãããã¨ãèãã¾ãã ã«ã¼ãã«æ³ã®å°å ¥ ããã¾ã§è¿°ã¹ã¦ãããµãã¼ããã¯ã¿ã¼ãã·ã¼ã³åé¢é¢ãè¶ å¹³é¢ã§ãããã¨ãåæã¨ãã¦ãã¾ãããããããå®éã®åé¡ã§ã¯æ£ä¾ãã¼ã¿ã¨è² ä¾ãã¼ã¿ã®å¢çãè¶ å¹³é¢ã§ããããã¯ãè¤éã«å ¥ãçµãã è¶ æ²é¢ã§ããå¯è½æ§ãé«ããã¨ãæ³å®ããã¾ãã ãã®ãããªãã¼ã¿ã«ãããã¾ã§è¿°ã¹ã¦ãããããªã¯ã©ã¹å¢çãè¶ å¹³é¢ã¨ãããµãã¼ããã¯ã¿ã¼ãã·ã¼ã³ãé©ç¨ãã¦ããé«ãå顿§è½ãæå¾ ãããã¨ã¯é£ãããã§ãã ãã¨ãã°ä¸å³ã®ãããªåç´ãªã±ã¼ã¹ã§ããæ£ä¾ãã¼ã¿ï¼âï¼ã¨è² ä¾ãã¼ã¿ï¼Ãï¼ãåããç´ç·ã¯åå¨ããªããããï¼ï¼ï¼ï¼ ã®å顿§è½ã¯éæã§ãã¾ããã ãããããã®ãããªãã¼ã¿ã§ãç·å½¢åé¢ãå¯è½ã«ãªããããªå¥ã®ç©ºéã¸å¤æã§ããã°ã夿å ã®ç©ºéã§ã¯ã¯ã©ã¹å¢çãè¶ å¹³é¢ã«ãªãã®ã§ãµãã¼ãã
ãããã @gorira_bomb è¨åçæ¥ç«å¸ã¯ã©ã³ãã»ã«ãå¸ããæ¯çµ¦ãããããå®¶åºã§ã¯è²·ããªããã ãã©ãè²§å¯ã®å·®ãåºãªãã¦ããã¨æãããå¶æãæ¯çµ¦ãããã°ããã®ã«ã¨æãããªãã¨ã主義ã£ã¦ããããããªããã©åºæ¬ã¯å¹³çãããããç¹ã«åä¾ã¯ãã 2019-06-13 20:43:19 ãªã³ã¯ www.city.hitachi.lg.jp æ¥ç«å¸æè²å§å¡ä¼ï½ã©ã³ãã»ã«ã«ã¤ã㦠æ¥ç«å¸ã«ãä½ã¾ãã§å°å¦æ ¡ã«å ¥å¦ããæ°1å¹´çã¸ãå ¥å¦å¼å½æ¥ã«ã©ã³ãã»ã«ãè´åãã¦ãã¾ãã
å ã«çµè«ãæ¸ãã 大å¦ã®ç ç©¶åãè¡°éããæå¤§ã®çç±ã¯ãæè²æ¹é©ãã§ãããäºç®ã®æ¸å°ãæå¤§ã®çç±ã§ã¯ãªãã æè²æ¹é©ããããã°ãäºç®ãå¢ãããã¨ãç ç©¶åã¯åä¸ããã ãã£ã¨å¹³æã«æ¸ãã°ã æè²ãé å¼µããããããç ç©¶åãè½ã¡ãã®ã§ããã æè²ã«ã¯æãæãã¦ãç ç©¶ã«åãæ³¨ãã¹ãã§ããã éå»ã®ç ç©¶ææãç¾ä»£ã®ãã¼ãã«è³åè³ã«çµã³ä»ãã¦ããçç±ã端çã«è¨ãã°ã ãæã¯æè²ãé©å½ã«ãã£ã¦ãããããã§ãããæéããã£ã·ããã£ããããã§ããã ä»ã¯ãç£æ¥çããã®å§åã§æ§ã ãªæè²æ¹é©ãå¼·çã«é²ãããã¦ããã ç®èãªãã¨ã«ãã©ããªã«æè²ã«åãå ¥ãã¦åªç§ãªäººæãè²ã¦ã¦ãããã®è½åãååã«æ´»ããã ãã®å ´æãä»ã®ç£æ¥çï¼ã¨ãã«çµå£é£ï¼ã«ã¯åå¨ããªãã ãããªãã¨ã¯ãéè·ãã¾ãããç³»ã®ã¨ã³ããªã§ãèªãã°æããã ã æ¹ãã¦è¨ãã¾ã§ããªããã大妿å¡ãæã¤ãªã½ã¼ã¹ã¯æéã§ããã æè²ã«ãªã½ã¼ã¹ãå²ãã°ããã®åãç ç©¶ã«å²
ç³å·åªå®#ãã§ããµã¤ãã許ããªãð¯ðµðð¥ºðð @ishikawa_yumi 1ä¸äººãè¶ ãã¾ããï¼ ã¡ã¼ã«ã¢ãã¬ã¹ã¨ãååã ãã§ç½²åãã§ãã¾ãã åé¡ç¹: â æ§å¥ã«ãã£ã¦åãè·å ´ã§å¼·å¶ãããæè£ ãéãã㨠â¡å¥åº·ã害ãã¦ã¾ã§å¼·å¶ãããããã¼ã¨ã¯ï¼ ãåçå´åçå®: ï¼KuTooãè·å ´ã§ã®ãã¼ã«ã»ãã³ãã¹ã®å¼·å¶ããªããããï¼ã chng.it/ZCbdcL2K @change_jpãã 2019-02-21 15:25:58
ããã¾ã§ãããã¤ãã®å°é£ã«ç«ã¡åãããããããèãã解決ããã¦ããé ¼ãã«ãªãæ°å ¥ç¤¾å¡ã§ãããä¸ã¤åé¡ãåºã¦ãã¾ããã ããã¯ããã½ã³ã³ã®ã¿ã¤ãã³ã°ã®é ãã§ãã ä»ç¾å¨ãææ¸ä½æã®ã»ã¨ãã©ãä»»ãã¦ãã¾ãã ã¬ã¤ã¢ã¦ãçã®èª²é¡ãããã¾ãããä½ããæåãæã¤é度ãé ãã»ã»ã»ã ããªãã¯å ¥åã®æ¹ã楽ï¼ã¨ãæç´ãè¥è ãã¡ãããããã¯ã¤ãã¦ããã¾ããã æã¯éãªããä»äºã¯å¹çãªããææ¸ä½æã¯ã¿ã¤ãã³ã°é度ãªãï¼ ç§ããããã試ãã¦ããã®ä¸ã§é¢ç½ãã¨æãããµã¤ããç´¹ä»ãã¾ãï¼ ï¼ï¼ï¼å¯¿å¸æï¼ããã ï¼ï¼ www.typing.sakura.ne.jp ã²ãããæµãã¦ããã寿å¸ï¼æåï¼ãå ¥åããããããå¾ã«ãªã£ããæçµçã«çµæãåºããã®ï¼ å®éãã£ã¦ã¿ã¾ãããããã¹ã¿ã¤ãå¤ããã£ï¼ ä¸åã«æã¤æåæ°ãèªåã«ãã£ããã®ãé¸ã¹ãã®ã§ã楽ãã¿ãªããã¿ã¤ãã³ã°ç·´ç¿ãã§ããã¨æãã¾ãï¼ ã寿å¸ã大好ããªæ¹ã«ã¯æ¯éãå§
ã¡ã³ããã³ã¹
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}