ä¸äººå½ããã®äºé ¸åçç´ æåºéã¯ãã¢ã¡ãªã«äºº15.8ãã³ãä¸å½äºº6.81ãã³ããã·ã¢äºº11.0ãã³ãã¤ã³ã人1.61ãã³ãæ¥æ¬äºº9.02ãã³ã¨ãªã£ã¦ãããå½ã«ããæåºéã¯ãã¨ãªã£ã¦ãã¾ãã
ä¸äººå½ããã®äºé ¸åçç´ æåºéã¯ãã¢ã¡ãªã«äºº15.8ãã³ãä¸å½äºº6.81ãã³ããã·ã¢äºº11.0ãã³ãã¤ã³ã人1.61ãã³ãæ¥æ¬äºº9.02ãã³ã¨ãªã£ã¦ãããå½ã«ããæåºéã¯ãã¨ãªã£ã¦ãã¾ãã
æ¨æºã³ã¼ã·ã¼åå¸ã®ç¢ºçå¯åº¦é¢æ°ã®ã°ã©ãã¯å³ã®ããã«ãªãã¾ãã æ£è¦åå¸ã¨åããå·¦å³å¯¾ç§°ãªåå¸ã§ãã1Ï\dfrac{1}{\pi}Ï1â ã¯æ£è¦åå®æ°ã§ãã ï¼â«âââdx1+x2=Ï\displaystyle\int_{-\infty}^{\infty}\dfrac{dx}{1+x^2}=\piâ«ââââ1+x2dxâ=Ï ã«æ³¨æï¼ æ¨æºã³ã¼ã·ã¼åå¸ãä¸æ¬¡å¤æãããã®ï¼ç¢ºçå¯åº¦é¢æ°ã f(x)=1Ïγ{1+(xâμγ)2}f(x)=\dfrac{1}{\pi\gamma\{1+(\frac{x-\mu}{\gamma})^2\}}f(x)=Ïγ{1+(γxâμâ)2}1â ã§ããåå¸ï¼ãä¸è¬ã«ã³ã¼ã·ã¼åå¸ã¨è¨ãã¾ãã ã³ã¼ã·ã¼åå¸ã¯ç©çã§ã¯ãã©ã¤ãã»ã¦ã£ã°ãã¼åå¸ããã¼ã¬ã³ãåå¸ã¨ãå¼ã°ãã¾ãããããããªååãã¤ãã¦ãã¾ããã
1. åãã« ãã¡ãã®ãã¼ã¸ãåèã«ï¼æ ªä¾¡ã®æ§é ãç´æ¥ç¸é¢ã«çç®ãã¦æµ®ãä¸ãããï¼å¯è¦åçã«ãè¨ç®çã«ãåãæ±ããããçãªã°ã©ãã¸å¤æãã¾ãï¼ æçµçã«ã¯æ¬¡ã®ãããªç¹å®ã®ã¨ãã¸ã強調ããã対ãã«ã³ãã°ã©ããæåãã¾ãï¼ Kaggleã®è¨äºã§ãç´¹ä»ãã¾ãããï¼ãã®ãããªå¤æ°éã®ç¸é¢é¢ä¿ãæ師ãªãå¦ç¿ã§ææ¡ãããã¨ã¯ï¼æ©æ¢°å¦ç¿ã®äºæ¸¬ç²¾åº¦ãåä¸ãããå¤æ°ãæ°ãã«ä½æããããï¼é常ã«å½¹ç«ã¤æ段ã¨ãªããã¾ãï¼ ã¾ãï¼ä»åã¯ä¸è¬çãªãã¢ã½ã³ç¸é¢ã§ã¯ãªãï¼GraphLassoãç¨ãã¦å¯¾ãã«ã³ãã°ã©ããæåãã¾ãï¼é常ï¼å¤æ°éã®ç¸é¢é¢ä¿ã¯ç´æ¥ç¸é¢ã¨éæ¥ç¸é¢ã®ï¼ç¨®é¡ãå«ã¾ãã¦ãã¾ãï¼éæ¥ç¸é¢ã¨ã¯ï¼æ¬æ¥ã§ã¯å æé¢ä¿ãæç«ããªãã¯ãã®å¤æ°éã§ç¬¬ä¸å åã®åå¨ã«ããç¸é¢ãçºçããï¼è¦ããä¸ã®ç¸é¢ãæå³ãã¾ãï¼Sklearnã®GraphLassoã¯ï¼åå¤æ°ã®ç¢ºçå¯åº¦é¢æ°ãã¬ã¦ã¹åå¸ã«åºã¥ãã¨ããåæã®ãã¨ï¼ç²¾åº¦è¡åã
ãNext Tokyo â24ãã»ãã·ã§ã³ã®ã¢ã¼ã«ã¤ãåç»ã¨ã¹ã©ã¤ããå ¬éä¸ã§ããçæ AI ãä¸å¿ã¨ãã Google Cloud ã®ã¢ãããã¼ãã顧客äºä¾ããã§ãã¯ãã¾ãããã
ãµã¼ãã¹çµäºã®ãç¥ãã ãã¤ãYahoo! JAPANã®ãµã¼ãã¹ããå©ç¨ããã ãèª ã«ãããã¨ããããã¾ãã ã客æ§ãã¢ã¯ã»ã¹ããããµã¼ãã¹ã¯æ¬æ¥ã¾ã§ã«ãµã¼ãã¹ãçµäºãããã¾ããã ä»å¾ã¨ãYahoo! JAPANã®ãµã¼ãã¹ããæ顧ãã ããã¾ãããããããããé¡ããããã¾ãã
Technical Data presentation in R ã³ããã§å¦ã¶ Rã§ãã¯ãã«ã«ãã¼ã¿ãã¬ã¼ã³ãã¼ã·ã§ã³ ï¼ï¼åºç¤çµ±è¨è§£æç·¨ ã°ã©ãã£ãã¯ã¹ã»ãªãã©ã·ï¼æè²: ãå³å¦ I ã»å³å½¢æ å ± I ã»çµ±è¨å¦ãç§ç®ãä¿®äºå¾ã®ã³ã¼ã¹ã¦ã§ã¢ ç¦å²¡å¤§å¦å·¥å¦é¨å³å¦æ室ããã梶山ãåä¸é ã»ã¤ã¾ã¿é£ãã§ï¼å¦ç¿ããªãããã«é¡ãã¾ãï¼ ã»ãã¼ã¿ã®å¯è¦åãä½ç³»ã»ç³»çµ±ã ã£ãã¹ãã«ã«ããããã«é ã追ã£ã¦å¦ç¿ããï¼ ã»çµ±è¨ãã¼ã ã«ä¹ã£ã¦ããå¦ç¿è ãå 人ã«æè¬ã®æ°æã¡ãï¼ããã«ï¼ ã»ç¢ºããªã¹ãã«ã«ããããã«ï¼æç§æ¸ã»è§£èª¬æ¸ãç解ãï¼Rã¹ã¯ãªããã§ç¢ºèªï¼ A.ãã¯ããã«--ããã¯çµ±è¨ã»è§£æã®å¿ è¦ãå³ãã£ãå¾ã§èªãã°ãã ã¾ãï¼çµ±è¨ã®æç¶ããå®è¡ããï¼æ £ãããçµ±è¨çã«èãããï¼ å¦æ ¡ã®çµ±è¨å¦ã復ç¿--è²·ã£ãæç§æ¸ã¨ãã¼ããã¾ãèªãã ã a. 測å®ã¨å°ºåº¦ãMeasurement and scale b. è¨è¿°çµ±è¨å¦ã®
ãã¼ã¯ã¼ã ç ´ç£ç¢ºçãåçãæçç ç ´ç£ç¢ºçã¨ã¯ Aã®å½åã®è³éãï½ãAãåã¤ç¢ºçï¼åçï¼ãï½ã¨ãã¾ããAãåã¦ã°ï½åãï¼¢ããè²°ããè² ããã°ï½åãï¼¢ã«æãã¨ããã²ã¼ã ãè¡ãã¾ãããã®ã¨ããï½ï¼ï½ï¼ï½ã®ãã¨ãæççã¨ããã¾ãã ããã¦ãAã®ææéã ï¼å¹¸éã«ãï¼ï½åã«ãªãã»ã»ã»ãã®ï½ãç®æ¨éé¡ã¨ãã ï¼ä¸å¹¸ã«ãï¼ï¼åã«ãªãã»ã»ã»ç ´ç£ããã¨ãã ã¾ã§ãåè² ãç¶ããã¨ãã¾ãã ãã®ã¨ããAãï½åãå¾ã以åã«ç ´ç£ãã確çãç ´ç£ç¢ºçã¨ãããï¼±(ï½) ã§è¡¨ãã¾ãã ãã®ç ´ç£ç¢ºçãæ±ããã®ããããã§ã®ç®çã§ãã ï½ï¼ï¼.ï¼ãï½ï¼ï½ï¼ï¼ãªãã°ãçµ±è¨çã«ã¯æå¾ããªãã®ã§ãå½åã®è³éï½ã«ã¯ç¡é¢ä¿ã®ããã«æããã¾ãã ã¨ããããå®éã«ã¯åã¡ç¶ãããè² ãç¶ããããããã¨ãå¤ãããã¾ããå³ã®ã°ã©ãã¯ãä¹±æ°ãç¨ãã¦åè² ãå¤å®ãããä¸ã®ã²ã¼ã ããï¼ï¼ï¼åè¡ã£ãã¨ãã®ãAã®æéã®å¢æ¸ã示ãããã®ã§ãï¼ãã®ãããªåããã©ã³
IRRã¨ã¯ãInternal Rate of Returnã®ç¥ã§ãæè³ã«å¯¾ããåççï¼å©åãï¼ã表ãææ¨ã§ããæ¥æ¬èªã§ã¯ãå é¨åççãå é¨å©ççãªã©ã¨è¡¨ç¾ãã¾ããIRRã10%ã®ããã¸ã§ã¯ãã¨ããã®ã¯ãæè³å©åã10%ã®ããã¸ã§ã¯ããæå³ãã¾ãã IRRã使ãã¡ãªãã IRRã使ããã¨ã§ãããã¸ã§ã¯ãéã§åçåã®ã¿ã¤ãã³ã°ãç°ãªãå ´åã§ããåãææ¨ã§ããã¸ã§ã¯ãã®åççãè°è«ã§ããããã«ãªãã¾ãã åããªã¿ã¼ã³ã§ããã°ãæ©ããªã¿ã¼ã³ãå¾ãããã»ã©IRRã¯é«ããªãã¾ã ï¼è©³ç´°ã¯å¾ã»ã©ã®äºä¾ã§è§£èª¬ãã¾ãï¼
ãã¯ãçµæ¸å¦è¬ç¾©ãã¼ã 第ï¼è¬ãã¤ã³ãããã¯ã·ã§ã³ 第ï¼è¬ãGDPã¨ã¯ 第ï¼è¬ãï¼é¢ç価ã¨GDPã®å®ç¾© 第ï¼è¬ãISãã©ã³ã¹ 第ï¼è¬ãç©ä¾¡ææ° ç¬¬ï¼è¬ãå½æ°æå¾ã®æ±ºå® 第ï¼è¬ãçµæ¸ã¢ãã«ã®æ¡å¼µ 第ï¼è¬ãä¹æ°åæ 第ï¼è¬ãæ¶è²»é¢æ° 第10è¬ãæè³é¢æ° 第11è¬ã貨幣ã®éè¦ ç¬¬12è¬ã貨幣ã®ä¾çµ¦ 第13è¬ãIS-LMåæ 第14è¬ã財æ¿éèæ¿ç 第15è¬ãå´åå¸å ´ã®åæ 第16è¬ãç·éè¦ç·ä¾çµ¦åæ 第17è¬ãéæ¾çµæ¸ã®åæ ä»é²A çµæ¸è¾å ¸ã«ã¤ã㦠ä»é²B çµæ¸ãã¼ã¿ï¼ã°ã©ãï¼ ä»é²C åºæ¬çµæ¸ç¨èª ä»é²D é¢é£æ°èè¨äºä¸è¦§ ä»é²Eã年表 ä»é²Fãå°ãã¹ã [top]ã[ãã¯ãçµæ¸å¦ï¼ã«æ»ã] [Home] (c) Shigeru Sasayama, Kumamoto Gakuen University
â ã¯ããã« ãã¦ãä»åã¯ãåæ£åæãã¨ãããã®ãæ±ãã¾ãã ååã®æ¤å®ã®æ¦å¿µã¯ç解ã§ãã¾ããã§ããããï¼ããã§ã¯ãã£ããå§ãã¦ããã¾ãããã â åæ£åæã¨ã¯ åæ£åæã¨ã¯ãè¨ã£ã¦ãã¾ãã°æ¤å®ã®ä¸ã®ï¼ã¤ã§ããå ã»ã©ã®æ¤å®ã§ã話ããã¾ããã¨ãããæ±ããã¼ã¿ã®ç¨®é¡ãæ°ãªã©ã«ãã£ã¦æ¤å®ãè¡ãææ³ãç°ãªãã¾ãããã®ä¸ã§ãï¼ã¤ä»¥ä¸ã®æ°´æºãèæ ®ããªããããããã®è¦å ã®æææ§ãè¦å ãæ¢ããã¨ããææ³ããåæ£åæ(analysis of variance)é称ANOVAæ³ã§ãã ãã¼ã¿ã«ã¯å ã ã°ãã¤ãï¼èª¤å·®ï¼ãããã¾ãããã®èª¤å·®ã«ããã°ãã¤ãããè¦å ã«ãã£ã¦å¤åããå¤ã¨æ··åãã¦ãã¾ãã¨ééã£ãåæã®å ã¨ãªã£ã¦ãã¾ãã¾ãã ããã§ãæå³ã®ãªãå¤åï¼èª¤å·®å¤åï¼ã¨æå³ã®ããå¤åï¼è¦å ã«ãã£ã¦å¤åããé¨åï¼ã®åæ£ãåãããã®åæ£æ¯ãæ±ãããã¨ã§ãè¦å ã«ããå¤åã誤差ã«æ¯ã¹ã¦ååã«å¤§ãããã°è¦å ã«ãã
%matplotlib inline import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import seaborn as sns import numpy.random as rd m = 10 s = 3 min_x = m-4*s max_x = m+4*s x = np.linspace(min_x, max_x, 201) y = (1/np.sqrt(2*np.pi*s**2))*np.exp(-0.5*(x-m)**2/s**2) plt.figure(figsize=(8,5)) plt.xlim(min_x, max_x) plt.ylim(0,max(y)*1.1) plt.plot(x,y) plt.show() ãã®å³ã¯ãå¹³å$\mu$ãæ¨æºåå·®$\sigma$
1 2 3 4 5 6 7 2 X Y X Y 8 9 X X X X i X i 10 11 12 13 Y = f(X) X Y f f 14 15 16 17 18 19 20 21 22 23 Yes Yes No No 24 25 k 26 27 28 29 30 31 32 33 34 KDD Process: Knowledge Discovery and Data Mining 35 36 37 38 39 40 41 42 43 44 45 46 47 48
åä½ç¹å帰ãã¨ããææ³ã®ãç´¹ä»ã§ãã é常ã®å帰ç´ç·ã¯ã$x$ãä¸ããããæã®$y$ã®æ¡ä»¶ä»ãæå¾ å¤(å¹³å)ã¨è§£éã§ãã¾ãããåä½ç¹å帰ã§ã¯ã25%åä½ç¹ãã¨ã95%åä½ç¹ãçã§ä½¿ããã "åä½ç¹" ããã¼ã¹ã«å帰ç´ç·ãå¼ãã¦ã¿ããã¨ãããã®ã§ãã ä½ã¯ã¨ããããã¾ãã¯ããã使ã£ã¦ã°ã©ããæ¸ãã¦å¯è¦åã試ã¿ã¾ãã #1.誤差ã®åæ£ã説æå¤æ°ã«ä¾åããæ£è¦åå¸ã®ä¾# 説æå¤æ°$x$ãå°ããã¨ããã§ã¯èª¤å·®ã®åæ£ãå°ããã大ããã¨ããã§ã¯èª¤å·®ã®åæ£ã大ãããªããããªã±ã¼ã¹ã§ãããããªãã¼ã¿ãçæãã¦è©¦ãã¦ãã¾ãã åä½ç¹å帰ã§ã¯ãåä½ç¹ãã¨ã«ç°ãªã $\beta$ãè¨å®ãããã®ã§ãããããå¾ããç°ãªãã¾ãã åä½ç¹å帰ã®å®è¡çµæ ä¸ããé ã«5%, 10%, 25%, 75%, 90%, 95%ã®åä½ç¹å帰ç´ç·ã¨ãé常ã®å帰ç´ç·ã§ãã ã¾ãã¯ãã¼ã¿ãçæãã¦æ£å¸å³ãæãã¾ãã # æªã¤ã³ã¹ãã¼ã«ãª
JavaScriptã®ã°ã©ãã©ã¤ãã©ãªã52種é¡ãéãããJavaScript Graphsããã°ã©ãã®ç¨®é¡ãä¾åã©ã¤ãã©ãªãä¾¡æ ¼ãªã©ã§çµãè¾¼ã¿å¯è½ æ°å¹´åã«èªä½ã®ã¢ããªã±ã¼ã·ã§ã³ãJavaScriptã§ä½ã£ãã¨ãã«ã°ã©ãæ©è½ãå®è£ ãããã¨ãã¦ãããã¤ãã®ã°ã©ãç¨ã®JavaScriptã©ã¤ãã©ãªãæ¢ãã¦è©¦ãããã¨ãããã¾ãããJavaScriptã©ã¤ãã©ãªãæ¢ãã®ã¯ããããªãã«æéãããããã®ã§ããã ãã¡ããå½æããJavaScriptã®ã°ã©ãã©ã¤ãã©ãªã®æ å ±ãã¾ã¨ãããµã¤ãã¯ããã¤ãããã¾ããããæè¿ç»å ´ãããJavaScript Graphsãã¯52種é¡ãã®ã©ã¤ãã©ãªãéãã¦ããã¸ã¥ã¢ã«ã«ä¸è¦§ã§ããããã«ãããµã¤ãã§ãã ãã¾ãã¾ãªæ¡ä»¶ã§çµãè¾¼ã¿ãã§ãã便å©ãªæ©è½ãåãã¦ãããæ¡ä»¶ã¨ãã¦ã¯æãç·ã°ã©ãããã¼ãããã°ã©ãã«å¯¾å¿ãããã®ãªã©ã°ã©ãã®ç¨®é¡ãç¡æãææãéåç¨ã®ãã®ãªã©ã®ä¾¡æ ¼
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}