Stack Exchange Network Stack Exchange network consists of 183 Q&A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers. Visit Stack Exchange
ã³ããã®å½±é¿ã«ãã£ã¦é常ã«å¤§ããªãã¡ã¼ã¸ãåãã宿æ³ã飲é£ã交éãªã©è¦³å ã«é¢ãã人ã«ã¨ã£ã¦ã¯é ¼ã¿ã®ç¶±ã§ããGo Toãã©ãã«ããããªå¤ãã®äººã ã®éç¨ãçæ´»ãæ¯ãããã¨æ¿åºãåãå ¥ãã¦ããæ¿çã«ã¤ãã¦ãæ¥æ¬å»å¸«ä¼é·ãæ°åã³ããæ¥æ¡å¤§ã®ããã£ããã«ãªã£ããã¨ã¯ééããªããã¨ã®è¦è§£ãçºè¡¨ããã¾ããã
Animated global statistics that everyone can understand
2 2003 12 5 ' & $ % ( ) ( ) 2 I 3 1 3 2 2 ? 6 3 11 4 ? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 ' & $ % 17 1.1 x1, x2, . . . , xn xÌ( ) xÌ = 1 n n X i=1 xi 1.2 (SD ) x1, x2, . . . , xn s2 s2 = 1 n n X i=1 (xi â xÌ)2 s s = â s2 2.1 2.2 2.3 ( ) 2 : 4 1 : : 3.1 3.2 0, 1 n 4.1 µ ( ) xÌ 4.2 Ï2 ( ) s2 u2 = 1 n â 1 n X i=1 (xi â xÌ)2 5.1 4 1. (H0) 2. 3. 4. 5.2 5% 1% 6.1 6.2 3 â - â
When $x$ is discrete, KL divergence is $D_{KL}(P||Q)=\sum\limits_{x}P(x)\log \frac{P(x)}{Q(x)}$, when $x$ is continuous, $D_{KL}(P||Q)=\int\limits_{x}p(x)\log \frac{p(x)}{q(x)}dx$. However, when the space of the random variable $x$ is defined on mixed continuous and discrete space, what would be the KL divergence? For example, $x=(r,a)$, where $r$ is a continuous variable that follows Gaussian dis
1. ã¯ããã« ãã¼ãã¹ãã©ããä¿¡é ¼åºéã«ã¤ãã¦èª¿ã¹ã¦ãããã§ãããçè«çãªæ±ãæ¹ã¯æç§æ¸ãªã©ã«è¼ã£ã¦ããã®ã§ãããå®è·µçãªæ å ±ãå°ãªãããã«æãã¾ãã ä»åãå°ã調æ»ãã¦ã¿ã¦ãå®éã«é©ç¨ããéã«æ³¨æãå¿ è¦ã ãªã¨æãããã¨ã«ã¤ãã¦æ¸ãã¦ããã¾ãã 2. ãã¼ãã¹ãã©ããä¿¡é ¼åºé ãã¼ãã¹ãã©ããæ³ã¯ãçè«çã«æ±ããã®ãé£ããçµ±è¨éããçµé¨åå¸ããã®ã·ã³ãã«ãªãªãµã³ããªã³ã°ã«ãã£ã¦æ¨å®ã§ããã¨ããææ³ã§ãã ãã¼ãã¹ãã©ããæ³ã§ã¯ãæ¨å®ãããçµ±è¨éã«å¯¾ãã¦ããã®ä¿¡é ¼åºéãæ±ãããã¨ãã§ãã¾ãã ãã®ãããªä¿¡é ¼åºéããã¼ãã¹ãã©ããä¿¡é ¼åºéã¨ããã¾ãã ãã¼ãã¹ãã©ããä¿¡é ¼åºéãæ±ããæ¹æ³ã«ã¤ãã¦ã¯è²ã è°è«ãããããã§ããã主ãªææ³ã¯æ¬¡ã®5ã¤ã§ãã æ£è¦åå¸è¿ä¼¼æ³ ãã¼ã·ãã¯æ³ ãã¼ã»ã³ã¿ã¤ã«æ³ BCaæ³(bias-corrected and accelerated percentile me
The Kolmogorov-Smirnov test (Chakravart, Laha, and Roy, 1967) is used to decide if a sample comes from a population with a specific distribution. The Kolmogorov-Smirnov (K-S) test is based on the empirical distribution function (ECDF). Given N ordered data points Y1, Y2, ..., YN, the ECDF is defined as \[ E_{N} = n(i)/N \] where n(i) is the number of points less than Yi and the Yi are ordered from
éåç¥ããã°ã©ãã³ã° ãèªãã§ããããK-means æ³ï¼Kå¹³åæ³ï¼ã®èª¬æãåºã¦ãã¾ããã K-means æ³ã¯ã¯ã©ã¹ã¿ãªã³ã°ãè¡ãããã®å®çªã®ã¢ã«ã´ãªãºã ãããã§ããåå¨ã¯ç¥ã£ã¦ãããã ãã©ãã¾ãã¡ãã³ã¨ãã¦ããªãã£ãã®ã§ãåä½ãç解ããããã«ãµã³ãã«ãä½ã£ã¦ã¿ã¾ããã ã¯ãªãã¯ããã¨ï¼ã¹ããããã¤åãããã¨ãã§ãã¾ããã¯ã©ã¹ã¿ã®æ°ãç¹ã®æ°ãå¤æ´ãã¦ãRestart ãæ¼ãã¨å¥½ããªãã©ã¡ã¼ã¿ã§è©¦ããã¨ãã§ãã¾ãã ãããã£ã¦ï¼ã¹ããããã¤ç¢ºèªããªããåããã¦ã¿ãã¨ãæå¤ã«åç´ãªä»çµã¿ãªã®ãå®æã§ãã¾ããã (追è¨) HTML5 çã® K-means æ³ã D3.js ã§ãã¸ã¥ã¢ã©ã¤ãºãã¦ã¿ã ãä½æãã¾ãããFlash ã表示ã§ããªãç°å¢ã§ã¯ãã¡ããã覧ãã ããã K-means æ³ã¨ã¯ Kå¹³åæ³ - Wikipedia ã«è©³ããæ¸ãã¦ãããã©ããããããã¶ãã¯ãªã¨æ¸ãã¨ãããªã¤ã¡ã¼ã¸ã«
æè¿ã®è¼¸åºå ¥ååã«ã¤ãã¦å¹´åå¥ã«ãã輸åºå ¥é¡åã³å·®å¼é¡ã®æ¨ç§»ããå°åå¥è¼¸åºå ¥é¡ã®æ¨ç§»ãã貿æç¸æå å½ä¸ä½ï¼ï¼ã«å½ã®æ¨ç§»ãã対ä¸ç主è¦è¼¸åºå ¥åã®æ¨ç§»ãã主è¦è¼¸åºå ¥åã®æ¨ç§»ããã¾ã¨ãã¦ããã¾ãã åãªã³ã¯å ãã¯ãªãã¯ããã¨PDFãã¡ã¤ã«ãéãã¾ãã
éå©ï¼é éã»è²¸åºé¢é£ï¼ åºæºè²¸ä»å©ç[æ¥æ¬¡] [æ次] é é種é¡å¥åºé 表示éå©ã®å¹³åå¹´å©çç[æ次] 貸åºç´å®å¹³åéå©[æ次] ãã¼ã±ããé¢é£ ã³ã¼ã«ã¬ã¼ã[æ¥æ¬¡] [æ次] çºæ¿ç¸å ´ï¼æ±äº¬ã¤ã³ã¿ã¼ãã³ã¯ç¸å ´ï¼[æ¥æ¬¡] [æ次] å®å¹çºæ¿ã¬ã¼ã[æ次] é éã»ããã¼ ããã¿ãªã¼ãã¼ã¹å¹³åæ®é«[æ次] ããã¼ã¹ããã¯[æ次] è²¸åº é éã»ç¾éã»è²¸åºé[æ次] 貸åºã»é éåå[æ次] éèæ©é¢ãã©ã³ã¹ã·ã¼ã 主è¦åå® åå¹´æ¯ï¼å½å éè¡ï¼[æ次] è³éå¾ªç° å®¶è¨éèè³ç£ï¼è³é循ç°çµ±è¨ï¼[ååæ] ç観 å ¨å½ç観ã»å¤æé ç®ï¼æ¥æ³ï¼[ååæ] å ¨å½ç観ã»å¤æé ç®ï¼å½å é給ï¼[ååæ] å ¨å½ç観ã»å¤æé ç®ï¼è²©å£²ä¾¡æ ¼ï¼[ååæ] å ¨å½ç観ã»å¤æé ç®ï¼ä»å ¥ä¾¡æ ¼ï¼[ååæ] å ¨å½ç観ã»å¤æé ç®ï¼çç£è¨åï¼[ååæ] å ¨å½ç観ã»å¤æé ç®ï¼éç¨äººå¡ï¼[ååæ] å ¨å½ç観ã»å¤æé ç®ï¼è³éç¹°ãï¼[ååæ] å ¨å½ç観
ãã®ãã¼ã¸ã®æ¬æ㸠ã¡ãã¥ã¼ 貿æçµ±è¨æ¤ç´¢ãã¼ã¸ çµ±è¨è¡¨ä¸è¦§ å ±éçºè¡¨è³æ ãããã質å ç¨é¢ãã¼ã ãã¼ã¸ English English ç¾å¨ä½ç½®ï¼ ããããã¼ã¸Â > 年å¥è¼¸åºå ¥ç·é¡ã®æ¨ç§»è¡¨ï¼1950年以éï¼ è²¡åç貿æçµ±è¨ãå¹´å¥è¼¸åºå ¥ç·é¡ï¼ç¢ºå®å¤ï¼ 輸åºå ¥ç·é¡ã®æ¨ç§»Â ï¼åä½ï¼ååï¼ æ¦å¹´ è¼¸åº è¼¸å ¥ 1950 298,021,052 348,195,583 1951 488,776,775 737,241,298 1952 458,243,197 730,351,682 1953 458,943,408 867,469,443 1954 586,525,032 863,785,437 1955 723,815,976 889,714,970 1956 900,229,011 1,162,704,360 1957 1,028,886,636 1,542,090,900 1958 1,03
12æ24æ¥ è¾²æ¥çµå¶çµ±è¨èª¿æ»ï¼å¶è¾²é¡åå¥çµå¶çµ±è¨ï¼ 令å5å¹´è¾²æ¥çµå¶ä½ã®çµå¶åæ¯ 12æ24æ¥ è¾²æ¥çµå¶çµ±è¨èª¿æ» 令å5å¹´çä¹³çç£è²» 12æ24æ¥ è¾²æ¥çµå¶çµ±è¨èª¿æ» 令å5å¹´èç¨ççç£è²»ï¼»åçã»å»å¢è¥é½¢è¥è²çã»ä¹³ç¨éè²æçã»ä¹³ç¨éè¥è²çã»äº¤é種è²æçã»äº¤é種è¥è²çï¼½ 12æ24æ¥ è¾²æ¥çµå¶çµ±è¨èª¿æ» 令å5å¹´è¥è²è±çç£è²» 12æ24æ¥ ä»¤å5å¹´è¾²æ¥ç·ç£åºé¡åã³çç£è¾²æ¥æå¾ï¼å ¨å½ï¼ 12æ24æ¥ ä»¤å5å¹´è¾²æ¥ç£åºé¡åã³çç£è¾²æ¥æå¾ï¼é½éåºçå¥ï¼ 12æ24æ¥ ä½ç©çµ±è¨èª¿æ» 令å6å¹´ç£ãªããï¼åå®ç¨ï¼ã®ä½ä»é¢ç©åã³åç©«é 12æ20æ¥ 2023å¹´æ¼æ¥ã»ã³ãµã¹çµæã®æ¦è¦ï¼ç¢ºå®å¤ï¼ 12æ13æ¥ ä»¤å5å¹´ææ¥çµå¶çµ±è¨èª¿æ»çµæ 12æ10æ¥ ä½ç©çµ±è¨èª¿æ» 令å6å¹´ç£æ°´é¸ç¨²ã®åç©«é
ã¹ãã¢ãã³ã®é ä½ç¸é¢ä¿æ° ç¸é¢ä¿æ°ã¯ï¼å¤éã«ç´ç·çãªç¸é¢é¢ä¿ãããã°é©ç¨ãããããããã§ãªãå ´åããã¼ã¿ã®é ä½ããåãã£ã¦ããªãå ´åãããã¾ãããããªã¨ãã«æå¹ãªã®ãã¹ãã¢ãã³ã®é ä½ç¸é¢ä¿æ°ã§ããæ±ãæ¹ã¯ã以ä¸ã®ããã«ãªãã¾ããä¸ã«ç¤ºããããªï¼å¤éã«é¢ãã¦é ä½ãã¤ãã¦ãã¾ãã
ææã®(1)ãã¢ã½ã³å帰ã¢ãã«ã®èª¬æãã(2)対æ°å¤æOLSã¨åãã«ãªã£ã¦ããæ°ããã¾ããéããã®ã ã¨æãã®ã§ãããã·ãã¥ã¬ã¼ã·ã§ã³ããã¦(1)ã¨(2)ã®æ¨å®ããã¦ç¢ºèªãã¦ã¿ã¾ããã 1. ã¢ãã« ãã¢ã½ã³åå¸ã¯ãã©ã¡ã¼ã¿ã¼ã§æ±ºå®ãããããã§ãããã説æå¤æ°ã§èª¬æããã¢ãã«ã«ãªãã¾ããåã®ãã©ã¡ã¼ã¿ããããã説æå¤æ°ããä¿æ°ã¨ãã¦ã以ä¸ã®ãããªå¼ã§ããã 被説æå¤æ°ã®å¤ã0以ä¸ã®æ´æ°ã®ã¨ãã®ç¢ºçããã¯éæ¥çã«æ±ºå®ããããã§ãããæç§æ¸çã«ã¯æå°¤æ³ãç¨ãã¦æ±ãããã¨ã«ãªãã¿ããã§ãããå®ç¨çã«ã¯ãªã³ã¯é¢æ°ãç¨ãã¦ä¸è¬åç·å½¢å帰ã¢ãã«ã§æ¨å®ã§ããããã§ãã 2. ãã¼ã¿ä½æ ã¾ãã¯ãã¢ã½ã³å帰ã¢ãã«ç¨ã®ãã¼ã¿xã¨yãä½æãã¾ãã set.seed(20130919) x <- round(runif(100, max=3)) lambda <- exp(1.1 + 1*x) y <- nume
çµ±è¨ç¹è« çµ±è¨ç¹è«ï¼ å°å ¥ é¢æ£ç¢ºçåå¸ é£ç¶ç¢ºçåå¸ ç¢ºçå¤æ°ã®é¢æ°ã®åå¸ åå¸ãã©ã¡ã¼ã¿æ¨å® 仮説æ¤å® çµ±è¨ç¹è«ï¼ Part 1ï¼åå²è¡¨ã®è§£æï¼é©å度æ¤å®ï¼ Part 2ï¼åæ£åæï¼å帰åæï¼ æçµæ´æ°æ¥ï¼2013å¹´ 4æ10æ¥
This HTML version of Think Bayes is provided for convenience, but it is not the best format for the book. In particular, some of the math symbols are not rendered correctly. You might prefer to read the PDF version, or you can buy a hard copy from Amazon. Think Bayes: Bayesian Statistics Made Simple Allen B. Downey Version 1.0.9 Copyright 2012 Allen B. Downey Permission is granted to copy, distrib
ITã¨ã³ã¸ãã¢ã®ããã®ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãé¤æè¬åº§ï¼10ï¼ï¼ æç³»ååæIIâARMAã¢ãã«ï¼èªå·±å帰移åå¹³åã¢ãã«ï¼ã®è©ä¾¡ã¨å°æ¥äºæ¸¬ éå»ã®æç³»åãã¼ã¿ãåºã«ãå°æ¥äºæ¸¬ã«ã¤ãªããã¢ãã«ãæ¤è¨ãå®éã«å°æ¥äºæ¸¬ãè¡ã£ã¦æ¤è¨¼ãã¦ã¿ã¾ããããï¼2014/9/1ï¼ ITã¨ã³ã¸ãã¢ã®ããã®ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãé¤æè¬åº§ï¼9ï¼ï¼ æç³»ååæI ââARMAã¢ãã«ã¨æç³»ååæ ã·ã¹ãã ãã°ãéèåå¼ãã¼ã¿ãæç³»åã§åæã§ããããã¸ãã¹ã·ã¼ã³ã§æ±ãããããã¼ã¿åæã®å¤ããå ãããæç³»åãã¼ã¿ãåæã®åºç¤ã解説ãï¼2014/6/24ï¼ ITã¨ã³ã¸ãã¢ã®ããã®ãã¼ã¿ãµã¤ã¨ã³ãã£ã¹ãé¤æè¬åº§ï¼8ï¼ï¼ å¯å±±çæ°ãåé¡ãã¦ã¿ããâ¦â¦ï¼ââã¯ã©ã¹ã¿ãªã³ã°åæã®ææ³ ããã°ã«ã¼ããå±æ§ãã¨ã«åé¡ãããã¯ã©ã¹ã¿ãªã³ã°åæãã®åºæ¬ãå¦ã¼ããä»åãèªæ²»ä½ãå ¬éãã¦ãããªã¼ãã³ãã¼ã¿ãé¡æã«ãã¾ããï¼2014/3/19ï¼ I
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}