ä¸è¬ç·å½¢ã¢ãã«ï¼ãã£ã±ããããããã§ããè±: general linear modelï¼ã¯ãçµ±è¨å¦ã§ç¨ããããç·å½¢ã¢ãã«ã®ä¸ã¤ãç·å½¢ã¢ãã«ã®ãã¡ãæ®å·®ãå¤å¤éæ£è¦åå¸ã«å¾ãç©ãä¸è¬ç·å½¢ã¢ãã«ã§ãä»»æã®åå¸ã¨ããç©ãä¸è¬åç·å½¢ã¢ãã«ãã©ã¡ãã GLM ã¨ç¥ãããã¨ãå¯è½ã ããRè¨èªã§ã¯ä¸è¬ç·å½¢ã¢ãã«ã lm()ãä¸è¬åç·å½¢ã¢ãã«ã glm() ã¨ãã¦ãããéã㯠en:Comparison of general and generalized linear models ãåç §ã 以ä¸ã®å¼ã§è¡¨ããã[1]ã Y = XB + U. ãã®å¼ã«ããã¦ãY ã¯å¤å¤éãã¼ã¿è¡åãX ã¯è¨ç»è¡åãB ã¯äºæ¸¬ããããã©ã¡ã¼ã¿ãå«ãè¡åããã㦠U ã¯æ®å·®ã表ãã¦ãããæ®å·®ã¯å¤å¤éæ£è¦åå¸ã«å¾ãã¨ããã ä¸è¬ç·å½¢ã¢ãã«ã¯ãåæ£åæï¼ANOVAï¼ãå ±åæ£åæï¼ANCOVAï¼ãå¤å¤éåæ£åæï¼MANOVAï¼ã
æ¯æ¯çã®æ¤å®(大æ¨æ¬ã®å ´å) æ¯éå£ã®ä¸ã§ï¼ããå±æ§ã«å¯¾ãã¦äºè±¡ã®èµ·ããå²åãäºè±¡ã®æ¯æ¯çã¨ããã¾ãï¼ãã®æ¯æ¯çã«é¢ãã仮説ãï¼æ¨æ¬å¤ããæ¤å®ãããã¨ãèãã¾ãï¼ æ¯æ¯çãã®äºé æ¯éå£ããæ½åºããã大ããã®æ¨æ¬ã ã¨ãã¾ãï¼ããã§ï¼ ã¨ãã¾ãï¼ãã®ã¨ãï¼ ã¨ããã¨ï¼ã¯æ¨æ¬ä¸ã§ãããã®ã®åæ°ã表ãçµ±è¨éã§ï¼ ã¯äºè±¡ã®æ¨æ¬æ¯çã¨ããã¾ãï¼ ãã®ã¨ãï¼æ¯æ¯çã«ã¤ãã¦ï¼ ãæ¢ç¥ã®å¤ã¨ãã¦ï¼å¸°ç¡ä»®èª¬ : ããï¼å¯¾ç«ä»®èª¬ : ã ã ãæ¤å®ãããã¨ãåé¡ã¨ãªãã¾ãï¼ æ¯æ¯çã®äºé æ¯éå£ãã大ããã®æ¨æ¬ ãã¨ãï¼ ã¨ããã¨ã¯äºé åå¸ã«å¾ãã¾ãï¼ããã§ãåå大ããã¨ãã«ã¯ã©ãã©ã¹ã®å®çã«ãã£ã¦ï¼ã¯è¿ä¼¼çã«æ£è¦åå¸ ã«å¾ãï¼æ¨æ¬æ¯ç ã¯è¿ä¼¼çã«æ£è¦åå¸ ã«å¾ãã¾ãï¼ãã£ã¦ï¼æ¨æºåãè¡ãã¨
Pythonã§æ£è¦åå¸ã®å¹³åå¤ã®ä¿¡é ¼åºéãè¨ç®ããæ¹æ³ (2016/02/17) 説æ ãã¾ãã«ãåºæ¬çãªãã¨ãªã®ã ãããããä¸ã§æ¤ç´¢ãããééã£ãä¾ãæå¤ã¨æ²¢å±±è¦ã¤ãã£ãã®ã§ã以ä¸ã«æ£ããã¨æãããã³ã¼ããè¼ããã import numpy as np from scipy import stats n_samples = 100 alpha = 0.95 data = np.random.randn(n_samples) mean_val = np.mean(data) sem_val = stats.sem(data) # standared error of the mean ci = stats.t.interval(alpha, len(data)-1, loc=mean_val, scale=sem_val) print('mean:', mean_val) print('c
ã¢ãã«å¼ 2.01Ãããçé·-12.57â§0ã®ã¨ããã¼ã¸ãã¢ã¢ã¤ã¡ã¨å¤å¥ 2.01Ãããçé·-12.57ï¼0ã®ã¨ããã³ã·ã§ã¯ã¢ã¤ã¡ã¨å¤å¥ ï¼ãã®ã¢ãã«å¼ã§ã¯ããã¼ã¸ãã¢ã¢ã¤ã¡ã¯æ¨æ¬50åä¸37åããã³ã·ã§ã¯ã¢ã¤ã¡ã¯50åä¸36åãæ£ããå¤å¥ããã¦ãããï¼ æå°¤æ¨å®å¤ã¯æ¼¸è¿çã«ã¯æ£è¦åå¸ãããã¨ãç¥ããã¦ãããä»åã®æ¨æ¬50åãã¤ã®ãã¼ã¿ã§åºããæå°¤æ¨å®å¤ï¼åç: â12.57ãããçé·ã®ä¿æ°: 2.01ï¼ããã©ã®ç¨åº¦æ£è¦åå¸ã«è¿ããããã¼ãã¹ãã©ããæ³ã§ä»¥ä¸ã®ããã«èª¿ã¹ããã¨ãã§ããã å ãã¼ã¿ãã n åã®æ¨æ¬ã復å æ½åºããããã®ã¨ã n ã¯å ãã¼ã¿ã®æ¨æ¬æ°ã§ããã æå°¤æ³ã§ãã¸ã¹ãã£ãã¯å帰ã¢ãã«ã«å½ã¦ã¯ããã ãã®ãã¼ãã¹ãã©ããæ½åºãä½åº¦ãï¼B åï¼ç¹°ãè¿ãã ãããã¦è¨ç®ããããæ¨å®éã®æ¨æ¬åå¸ãã¯ãæ¬æ¥ã®æ¨æ¬åå¸ã®è¿ä¼¼ã«ãªã£ã¦ããã ä¸å³ã¯10000åã®ãã¼ãã¹ãã©ããæ½åºã«ã
大岡山å°åºã®å»ºç© 大å¦æ£éããï¼æ¡ä¸¦æ¨ã®ã¦ããããããéãï¼å³æã®èçãã¤ã£ããå°å¾ã西8å·é¤¨ï¼è¥¿7å·é¤¨ã«ç¶ãã¿ã¡ã§ãï¼ å¤§å²¡å±±è¥¿8å·é¤¨ï¼ï¼¥æ£ï¼ï¼·æ£ï¼: ãã£ã³ãã¹ãããã®18, 19çªã®å»ºç©ã«ãããã¾ãï¼æ¬é¤¨ã®è¥¿é£ãã«ä½ç½®ãã¦ãã¾ãï¼æ£é¢çé¢ãã¯ãã£ãã¨ããã¯ï¼éã§ãï¼ ï¼¥æ£ã«ããã§ã®æ¹ã¯å»ä¸ãã¯ãã£ã¦ããå·¦æã®ã¨ã¬ãã¼ã¿ããå©ç¨ä¸ããï¼ ï¼·æ£ã«ã¯ããã¦ããã§ã®æ¹ã¯ååã«æ³¨æãã¦ä¸ããï¼ï¼¥æ£ã¨ï¼·æ£ãç¹ãã§ããéè·¯ã¯ï¼éã¨ï¼ï¼éã«ããããã¾ããï¼ï¼¥æ£ã®ã¨ã¬ãã¼ã¿ãå©ç¨ããã¨è¿·åã«ãªãã¾ãï¼æ£é¢çé¢ããå»ä¸ãã¾ã£ããã«ããã§ã«ãªãï¼å¥¥ã®å³æã«ããã¨ã¬ãã¼ã¿ããå©ç¨ä¸ããï¼ è¥¿7å·é¤¨ï¼ãã£ã³ãã¹ãããã®17çªã®å»ºç©ã«ãããã¾ãï¼è¥¿8å·é¤¨ããï¼å»ºç©ãäºã¤æãã 並ã³ã«ããã¾ãï¼èçããåãå ´åï¼å·¦æã«æ¬é¤¨ãè¦ãªããé²ã¿ï¼æ¬é¤¨ãã¨ããããããã®å³æã«ããå°ããªå»ºç©ã西7å·é¤¨ã§ãï¼æ©ã渡ã£ã¦ã¯ãã£ãã¨
ãã¸ã¹ãã£ã¹ã¯å帰åæ ãã¸ã¹ãã£ã¹ã¯å帰åæ 2014/4/30 æè²å¦ç 究ç§M1 æ³å²¡éå° 1 ã¯ããã« ã¯ããã« ï çµ±è¨ãè¦æãªäººã«ããçµ±è¨ãè¦æãªäººã¸ã® 説æã«ããã (ããã¼ãåãã£ã¦ãã人㮠説æã¯, éã«åããã«ãã) ï ã¯ãªãã£ã«ã«ãªè³ªåã«ã¯é¢é£ããã¾ã ï èªåã®ç 究ãææã«, æ¶ç©ºã®ãã¼ã¿ã§ãã¸ã¹ ãã£ã¯å帰åæãå®è·µãã¦ã¿ã (ä¸ç¨®ã®å®£ ä¼ã§ãããã®ã§ãï¼) 2 å帰åæã¨åãã¨ãã å帰åæã¨åãã¨ãã ï ãã¸ã¹ãã£ãã¯å帰åæã¯ç·å½¢å帰åæ (å é±ã®ããããããã®çºè¡¨ãã¦ããã) 㨠åæ§ã«, å¾å±å¤æ°ã y ï¼ axï¼b ã¨è¡¨ã (説æ å¤æ°ãå¤ããªãã°, y ï¼ ax1ï¼bx2ï¼c ã¨ãªã ã¾ã) âã説æãããäºæ¸¬ããç®çã¨ãã¦ãã ï¼ãã¸ã¹ãã£ãã¯å帰åæã¯, ãã¨ãã¨ç«å¦ ç 究ã«ããã¦è¤æ°ååå¨ããããªã¹ã¯ãã¡ ã¯ã¿ã¼ããæ¤è¨ããããã«ç¨ãããã)
ãã®è¨äºã¯æ¤è¨¼å¯è½ãªåèæç®ãåºå ¸ãå ¨ã示ããã¦ããªãããä¸ååã§ãã åºå ¸ã追å ãã¦è¨äºã®ä¿¡é ¼æ§åä¸ã«ãååãã ãããï¼ãã®ãã³ãã¬ã¼ãã®ä½¿ãæ¹ï¼ åºå ¸æ¤ç´¢?: "ãã³ã»ãã¤ãããã¼ã®Uæ¤å®" â ãã¥ã¼ã¹Â · æ¸ç±Â · ã¹ã«ã©ã¼Â · CiNii · J-STAGE · NDL · dlib.jp · ã¸ã£ãã³ãµã¼ã · TWL (2015å¹´9æ) ãã³ã»ãã¤ãããã¼ã®Uæ¤å®ï¼ãã³ã»ãã¤ãããã¼ã®ã¦ã¼ããã¦ããè±: MannâWhitney U testï¼ã¯ãã³ãã©ã¡ããªãã¯ãªçµ±è¨å¦çæ¤å®ã®ä¸ã¤ã§ãããç¹ã«ç¹å®ã®æ¯éå£ãããä¸æ¹ããã大ããªå¤ãæã¤å¾åã«ããæã«ã2ã¤ã®æ¯éå£ãåãã§ããã¨ãã帰ç¡ä»®èª¬ã«åºã¥ãã¦æ¤å®ãããã¦ã£ã«ã³ã¯ã½ã³ã®é ä½åæ¤å®ã¨å¼ã°ããã®ãå®è³ªçã«åãæ¹æ³ã§ãããã¾ã¨ãã¦ãã³ã»ãã¤ãããã¼ã»ã¦ã£ã«ã³ã¯ã½ã³æ¤å®ã¨ãå¼ã°ããã ãã³ã»ãã¤ãããã¼ã®Uæ¤å®ã¯ãæ£è¦åå¸ã®æ··å
30åã ãã§ã¯æ±ºãã¦ããããããªã ã¨ã¦ãã¨ã¦ãé£ãã ä¸è¬åç·å½¢ã¢ãã« with R M1 ç½ç åªå¸ ä»åã¯å°ºãçãã®ã§ ⢠ã¨ã«ããããã£ããã¨èª¬æãã¦ããããªæ¹æ³ãã ãããã¨è¨ããã¨ãç¢ºèª â¢ æ°å¦çãªå°åºã¯çãã¾ããã¾ã â (æ°å¼ã好ããªå¤æ ããã«ã¯ããããªãã) â ãµãã:;(â©Â´ï¹`â©);: â ã ã£ã¦ãè¡åãã©ãã¨ãããã¯ãã«ãã©ãã¨ããç· å½¢æ§ãããã¬ãããã¬ããã¼ã¦ãçããå«ã§ ããï¼ ã©ããã¦ã¢ããªã³ã°ï¼ ⢠æ¤å®ã®ãããªãå·®ãæãããã¨ã示ãã ãã§ãª ãããã¼ã¿å ¨ä½ã®æ§é ãç¥ããã â æ¤å®ã ãã§ã¯åãããªã ⢠ããããããªãå²ãç®ãå¤æ°å¤æããè±åºã ãã â ããã¾ã§ãã¦ææå·®ã«ãã ãããããã¯ãã¢ããªã³ ã°ã¨è¨ãæ段ãèãã¦ãããã®ã§ã¯ï¼ http://hosho.ees.hokudai.ac.jp/~kubo/ce/LinksGlm.html ç·å½¢ã¢ã
ããã§ç¤ºããè¨ç®å¼ã¯å¤§å½ããåæ°ãï½ã¨ãã¦ä¸è¬å½¢ã§æ¸ãã°ã \[ {}_4 C _n \times \biggl(\frac{1}{4}\biggr)^{n} \times \biggl(\frac{3}{4}\biggr)^{4-n}ããã»ã»ã»å¼ï¼¡\\ \] ã¨ãªãã¾ããã¢ã¿ãªï¼ç¢ºç1/4ï¼ãï½åãããºã¬ï¼ç¢ºç3/4ï¼ã4-nåãä½åç®ã«ã¢ã¿ãªãããããªã©ã®çµåãã4Cnéãããªã®ã§ããããããããå½¢ã«ãªã£ã¦ãã¾ãã ã¨ããã§ã表ã®ãè¨ããè¦ã¦ããããã°ãããã¨ããããã®ç¢ºçã®åè¨ã¯ãï¼ãã«ãªãã¾ããèµ·ããããå ¨ã¦ã®ç¢ºçã®åè¨ããï¼ãã«ãªããã¨ã«çåã¯ãªãã¨æãã¾ãããããå°ã説æãã¦ã¿ã¾ãããã \[ (x+y)^2=x^2+2xy+y^2\\ \] ããã¯(ï½ï¼ï½)2ãå±éããã ãã§ããããã®å¼ããã«ä¸å¯§ã«æ¸ãæããã¨ã \[ (x+y)^2={}_2 C _0 \times x^2
é·ææè³ã§ãªã¹ã¯ã¯ä¸ããã®ãä¸ãããªãã®ãã ä»ã¾ã§ã®èªåã¯ããã£ã¡ãæ£ãã!ããããã¯ãã©ã£ã¡ãæ£ããï¼ããèªä¿¡ããã£ã¦å¤æãããã¨ãã§ããã¹ãããªã§ãã¦ãã¾ããã§ããã ã§ããååã®ãªã¹ã¯ã¯ãªã¿ã¼ã³ã®æµ â ãªã¹ã¯ã¨ãªã¿ã¼ã³ã¨è¤å©ã®é¢ä¿ã®è¨äºã§å¾ãåæã¨ç¥èããã¨ã«ããã°ãä»åº¦ããã¡ããã¨ç解ã§ããã¯ãâ¦ã ååã®è¨äºã§å¾ããåæã¨ç¥èããã¨ã«ãã¦ããã³ãã³è°è«ã«ãªããã®è©±é¡ã«ã¤ãã¦ãæ¹ãã¦ç¢ºèªãã¦ã¿ããã¨ã«ãã¾ãã ãé·ææè³ã¯ãªã¹ã¯ãä¸ãããby ãã¼ãã³ã»ãã«ãã¼ã«ããããããã¯ééãã ã by å±±å´å ã»ã»ã»ã©ããããã¨ï¼ é·ææè³ã¯ãªã¹ã¯ãä¸ããã®ãä¸ããªãã®ãã®è°è«ã¯ãç§ã«ã¨ã£ã¦ã¯å¤ãã¦æ°ããåé¡ã ã¨ããã®ãããã¼ãã³ã»ãã«ãã¼ã«ããã¯ã2011å¹´åºçã®ã¦ã©ã¼ã«è¡ã®ã©ã³ãã ã»ã¦ã©ã¼ã«ã¼ã<åè第10ç>âæ ªå¼æè³ã®ä¸æ» ã®ççã®ããªã¹ã¯ã¯æè³æéã«ä¾åãããã¨ããç¯ã«ã¦ä»¥ä¸ã®
確çå¤æ° Y=lnX (=logeX) ãæ£è¦åå¸ã«å¾ãã¨ãããã®çæ°ã§ãã確çå¤æ° X ãå¾ã確çåå¸ã対æ°æ£è¦åå¸ (log-normal distribution) ã¨ãããæå¾ã®åå¸ã®ãããªä½ãæ¹ã«ã¯é度ããããé«ãæ¹ã«ã¯é度ããªããããªäºè±¡ã®ã¢ãã«åã«ä½¿ããããæ£è¦åå¸ããç°¡åã«å°åºãããã¨ãã§ããã¨ããå©ç¹ããããæ¬åå¸ã®å©ç¨ä¾ã¯å¤å²ã«æ¸¡ããã¦ã¤ã«ã¹ã®æ½ä¼æéã®åå¸ãã¨ã¢ãã¾ã«ã®ç²åå¾ã®åå¸ãå°æ®»ä¸ã«åå¨ããããã©ã«ã®åå¸çãåéãåããæ§ã ãªé åã§ç¨ãããã¦ãã確çåå¸ã§ããããã©ã¡ã¼ã¿ã¼ã¯æ£è¦åå¸ã¨åãããæå¾ å¤ Î¼ ã¨åæ£ Ï2 ã§ããã対æ°æ£è¦åå¸ã¯ LN(μ, Ï2) ã«ã¦ç¥è¨ãããã確çå¯åº¦é¢æ°ã¯ä»¥ä¸ã§ä¸ããããã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}