æµ·å¤ã«ããã対æ¥ä¸è«èª¿æ»ã¯ãæµ·å¤ã«ãããä¸è¬çãªæ¥æ¬ã®ã¤ã¡ã¼ã¸ããæ¥æ¬ã®å¤äº¤æ¿çã«å¯¾ããç解çã«ã¤ãã¦è¦³æ¸¬ããå¤äº¤æ¿çç«æ¡çã®åèã¨ãã¹ãæ¯å¹´åº¦å®æ½ãã¦ããã
å½ã®çµ±è¨ã§æªæ¥ç¨®ã¨æ¯ã¹ãæ¥ç¨®æ¸ã®æ¹ãé½æ§ã«ãªãå²åãä½ããã¨ã示ããã¦ãã¾ããæªæ¥ç¨®è ã¨æ¥ç¨®è ã§ã¯ææ対çæèã«å·®ãããã®ã§å²ãå¼ãå¿ è¦ãããã¾ãããçã®é«é½¢è æ½è¨ã®èª¿æ»ã§ãã3åç®æ¥ç¨®æ¸ã®é«é½¢è ã®æ¹ãææå²åãä½ããè¡åã«å·®ãç¡ã層ã§ãããã¨ãèããã¨äºé²å¹æã¯å®è¨¼ããã¦ãã¾ã https://t.co/2emNjdf0o2 pic.twitter.com/Ps3TlThLpB â çè°·ä¿äººï¼åèçç¥äºï¼ (@kumagai_chiba) April 25, 2022 ã¨ãããã¨ãªã®ã§ããâ¦ãªãã¨ï¼ãã®ãã¼ã¿ããã¤ã³ãããã ã£ãã¨ãåå´çãæ£å¼ã«å ¬è¡¨ããã®ã§ãã åå´çã¯æ¯é±ãã¯ã¯ãã³ã«é¢ãããã¼ã¿ãå ¬éããã®ã§ããããã5æ11æ¥ã®çºè¡¨ããé大ãªãã¼ã¿ä¿®æ£ã ã§ããã®çµæããã¡ãã åºå ¸ï¼ç¬¬83åï¼ä»¤åï¼å¹´ï¼æ11æ¥ï¼ æ°åã³ããã¦ã¤ã«ã¹ææç対ç ã¢ããã¤ã¶ãªã¼ãã¼ã https:/
å½æ¿é¸æã«ããã年代å¥æ票çã«ã¤ã㦠å½æ¿é¸æã®å¹´ä»£å¥æ票çã¯ã令å3å¹´10æã«è¡ããã第49åè¡è°é¢è°å¡ç·é¸æã§ã¯ã10æ³ä»£ã43.23ï¼ ã20æ³ä»£ã36.50ï¼ ã30æ³ä»£ã47.13ï¼ ã¨ãªã£ã¦ãã¾ããï¼å ¨å¹´ä»£ãéããæ票çã¯55.93ï¼ ï¼ ã¾ãã令å4å¹´7æã«è¡ããã第26ååè°é¢è°å¡é常é¸æã§ã¯ã10æ³ä»£ã35.42ï¼ ã20æ³ä»£ã33.99ï¼ ã30æ³ä»£ã44.80ï¼ ã¨ãªã£ã¦ãã¾ããï¼å ¨å¹´ä»£ãéããæ票çã¯52.05ï¼ ï¼ ãã®ããã«ããããã®é¸æã§ãä»ã®å¹´ä»£ã¨æ¯ã¹ã¦ãè¥å¹´å±¤ã®æ票çã¯ä½ãæ°´æºã«ã¨ã©ã¾ã£ã¦ãããã¨ãããç·åçã§ã¯ãç¹ã«è¥å¹´å±¤ã¸ã®é¸æåçºã主権è æè²ã«åãçµãã¨ã¨ãã«ãé¢ä¿æ©é¢çã¨ç·å¯ãªé£æºãå³ããæ票çã®åä¸ã«åªãããã¨ã¨ãã¦ãã¾ãã â»å¹´ä»£å¥æ票çã¯ãå ¨å½ããæ¨æºçãªæ票çã示ãã¦ããæ票åºãæ½åºãã調æ»ãããã®ã§ãã â»10æ³ä»£ã®æ票çã¯ã第24ååè°é¢è°å¡é常é¸æå
æ¶è²»è ç©ä¾¡ææ°ã¯ãå ¨å½ã®ä¸å¸¯ãè³¼å ¥ããå種ã®è²¡ã»ãµã¼ãã¹ã®ä¾¡æ ¼ã®å¹³åçãªå¤åã測å®ãããã®ã§ããããªãã¡ãããæç¹ã®ä¸å¸¯ã®æ¶è²»æ§é ãåºæºã«ãããã¨åçã®ãã®ãè³¼å ¥ããå ´åã«å¿ è¦ãªè²»ç¨ãã©ã®ããã«å¤åããããææ°å¤ã§è¡¨ãã¦ãã¾ãã ãã®ããã«ãæ¶è²»è ç©ä¾¡ææ°ã¯ç´ç²ãªä¾¡æ ¼ã®å¤åã測å®ãããã¨ãç®çã¨ãããããä¸å¸¯ã®çæ´»æ§å¼ãå好ã®å¤åãªã©ã«èµ·å ããè³¼å ¥ååã®ç¨®é¡ãå質åã¯æ°éã®å¤åã«ä¼´ãç活費ã®å¤åã測å®ãããã®ã§ã¯ãªããã¨ã«çæããå¿ è¦ãããã¾ãã æ¶è²»è ç©ä¾¡ææ°ã¯ã第äºæ¬¡ä¸ç大æ¦ç´å¾ã®æå21å¹´ï¼1946å¹´ï¼ã«åãã¦ä½ãããå½æã®æ¿ããã¤ã³ãã¬ã¼ã·ã§ã³ãè¨æ¸¬ããããã«ä½¿ããã¾ããããã®å¾ãæå27å¹´ï¼1952å¹´ï¼ã«ãå°å£²ç©ä¾¡çµ±è¨èª¿æ»ã§èª¿æ»ãããå°å£²ä¾¡æ ¼ããææ°ãä½æããããã«ãªãã¾ããã ãªããåææ°ç³»åã«ãããæç³»åæ¯è¼ãå¯è½ãªç¯å²ã«ã¤ãã¦ã¯ãã2020å¹´åºæºæ¶è²»è ç©ä¾¡ææ°ã®è§£èª¬ãã®ã第
ãã¼ã¿åæããå°ãåºãããã¤ã³ãµã¤ãç¡ãã«AIï¼äººå·¥ç¥è½ï¼ã®æ´»ç¨ã¯å§ã¾ãã¾ãããç§ãã¡ã¯ãåæ¥çç¥èã¨ãã¼ã¿ã»ã¢ããªãã£ã¯ã¹æè¡ãé§ä½¿ããã¼ã¿ããªãã³çµå¶ãå¼·åã«æ¯æ´ãã¾ãã ãã¼ã¿ãã¢ããªãã£ã¯ã¹ãAIã¯ä¼æ¥ã«ã¨ã£ã¦ç«¶åä»ç¤¾ã¨ã®å·®å¥åãå³ããã¤ã¦ãªãã»ã©å¤§ããªè¦å ã«ãªã£ã¦ãã¾ããä»æ¥ã®çµå¶å¹¹é¨ãå¹çãåä¸ããªããæ°ããªåçæºãéæããæ°ãããã¸ãã¹ã¢ãã«ãã¿ã¤ã ãªã¼ã«æ§ç¯ããæ¹æ³ã模索ããä¸ã価å¤ãçã¿åºãæé·ãç¶ããä¼æ¥ã«ã¯ããã¼ã¿æ´»ç¨ãã¨ããå ±éé ãããã¾ããç§ãã¡ã¯ãç¡æ°ã®ãã¼ã¿ããä¼æ¥ã«ã¨ã£ã¦æ¬å½ã«å¿ è¦ãªãã¼ã¿ãæ´»ç¨ããããã®æ¹æ³ãç¥ã£ã¦ãã¾ãã å°æ¥ãè¦æ®ãããªãã¬ã¼ã·ã§ã³ä½å¶ãåãã¦ããä¼æ¥ã®åæ°ä»¥ä¸ï¼52ï¼ ï¼ã¯ããã§ã«ãã¼ã¿ã¨ã¢ããªãã£ã¯ã¹ã大è¦æ¨¡ã«æ´»ç¨ãã¦ãã¾ãããã¼ã¿ã¨AIã«é¢ããåãçµã¿ããã¸ãã¹æ¦ç¥ã«æ²¿ã£ã¦å®æ½ãããã¨ã§æè³å©ççãè¿ éã«æ大åããæçµçã«ã¯AIãã
2022å¹´ã«ããã§æ»äº¡ãã人ã¯385,797人ï¼ç·æ§223,291人ã女æ§162,506äººï¼ 2009ï½2011å¹´ã«ããã¨è¨ºæããã人ã®5å¹´ç¸å¯¾çåçã¯ç·å¥³è¨ã§64.1 ï¼ ï¼ç·æ§62.0 ï¼ ã女æ§66.9 ï¼ ï¼ æ¥æ¬äººãä¸çã®ãã¡ã«ããã¨è¨ºæããã確çã¯ï¼2020å¹´ãã¼ã¿ã«åºã¥ãï¼ ç·æ§62.1%ï¼2人ã«1äººï¼ å¥³æ§48.9%ï¼2人ã«1äººï¼ æ¥æ¬äººãããã§æ»äº¡ãã確çã¯ï¼2022å¹´ã®ãã¼ã¿ã«åºã¥ãï¼ ç·æ§25.1%ï¼4人ã«1äººï¼ å¥³æ§17.5%ï¼6人ã«1人ï¼
Animated global statistics that everyone can understand
夫婦ã®å®çµåºçå æ°ã¯å¼ãç¶ãï¼äººãä¸åã æ¬èª¿æ»ã«ããã¦å¤«å©¦ã®å®çµåºçå æ°ã¨ã¯ãçµå©æç¶æéï¼çµå©ããã®çµéæéï¼15ï½19年夫婦ã®å¹³ååºçåã©ãæ°ã§ããã夫婦ã®æçµçãªå¹³ååºçåã©ãæ°ã¨ã¿ãªãããã 夫婦ã®å®çµåºçå æ°ã¯ãæ¦å¾å¤§ããä½ä¸ãã第ï¼å調æ»ï¼1972å¹´ï¼ã§ 2.20人ã¨ãªã£ãå¾ã¯ã第12å調æ»ï¼2002å¹´ï¼ã®2.23人ã¾ã§30å¹´éã«ããã£ã¦å®å®çã«æ¨ç§»ãã¦ããã ãããã第13å調æ»ï¼2005å¹´ï¼ã§2.09人ã«ä½ä¸ããããã«ååã®ç¬¬14å調æ»ï¼2010å¹´ï¼ã§ã¯1.96人ã¨ãã¯ããã¦2人ãä¸åã£ãã ä»å調æ»ã§ã¯å¤«å©¦ã®å®çµåºçå æ°ã¯1.94人ã§ãããåå調æ»ã«å¼ãç¶ãï¼äººãä¸åã£ãããªããä»å対象ã¨ãªã£ãçµå©æç¶æé15ï½19å¹´ã®å¤«å©¦ã¨ã¯ã1990年代å¾åã«çµå©ãã層ã§ããã
ç¾å¨ã®ä½ç½® ï¼ ãªãã»ã©çµ±è¨å¦å > å¦ã¶ã»ç¥ã > çµ±è¨ã»ãããç¥ããã > çµ±è¨èª¿æ»ã«ã¯å¿ ãçããªããã°ãããªãã®ï¼ãã¨ãã£ã¦ã¯ãã¡ãªã®ï¼
å½å ã®ææè æ°ã»æ»è æ° â2023å¹´5æ19æ¥ããçºè¡¨ãå§ã¾ã£ãæ°åã³ããã®ãå®ç¹ææ¡ãã®ãã¼ã¿ã¯ãã¡ããã æ°åã³ããã¦ã¤ã«ã¹ã®æ¥æ¬å½å ã®ææè æ°ãæ»è æ°ãéçè æ°ã®ææ°ãã¼ã¿ã§ããå ¨æéã俯ç°ããã°ã©ãã¨1æ¥ãã¨ã®ãã¼ã¿ã確èªã§ããã°ã©ãããããã表示ãã¦ãã¾ãã æ°åã³ããã¦ã¤ã«ã¹ã®ã5é¡ç§»è¡ãã«ä¼´ããããã¾ã§ã®ãå ¨æ°ææ¡ãã«ããæ¯æ¥ã®ææè æ°ã®çºè¡¨ã¯2023å¹´5æ8æ¥(æ)ãæå¾ã¨ãªãã¾ãããæ»è æ°ã¨éçè æ°ã®çºè¡¨ã¯2023å¹´5æ9æ¥(ç«)ãæå¾ãä»å¾ã¯å ¨å½5000ã®å»çæ©é¢ããã®å ±åããã¨ã«å ¬è¡¨ãããå®ç¹ææ¡ãã«å¤ããã¾ããããå®ç¹ææ¡ãã«ããæåã®çºè¡¨ã¯2023å¹´5æ19æ¥(é)ã«ãªãäºå®ã§ãããå®ç¹ææ¡ãã®ãã¼ã¿ãå¼ãç¶ããã¡ãã®ç¹è¨ãµã¤ãå ã§ãä¼ããã¾ãã
æ¥æ¬ã¯ç¾å¨ãããã0.2ï¼ ï¼50÷26,000ï¼ã®è¶ éæ»äº¡ã§ãããã¼ã¯æã¯4æé ã ã£ãã¨æãã¾ããã0.8ï¼ ã®è¶ éæ»äº¡ã§ããããã®æç¹ã§ãæ±æ¥æ¬å¤§éç½ã¬ãã«ã«ã¯è³ã£ã¦ãã¾ããã1ï¼ ã§ãæ·±å»ãªè¶ éã¨ã¯èãã¦ãã¾ããããã³ããã«ããè¶ éæ»äº¡1ï½5ï¼ è¾ºããç·æ¥å®£è¨ã®åºæºã§ã¯ãªããã¨æãã¾ããã¢ã¡ãªã«ã¯ã©ããã¨è¨ãã¨ãä»ã§ãæ¯æ¥1,000人弱ã®æ»è ãåºã¦ãã¾ããç¾æç¹ã®ã³ããã«ããè¶ éæ»äº¡ã¯9.8ï¼ ã«ããªãã¾ããããã§ãèªç²è§£é¤ãã¦ããã®ã¯ãæ°è¦ææè ãæ¸ã£ã¦ãã¦ããã®ã§ãæ»è ãæ¸ã£ã¦ããã¨äºæ¸¬ãã¦ããããã§ãããããã®æå³ã§ã¯ãæ»è ã¯ææè ããé ãã¦æ°åã«åºã¦ãã¾ãã®ã§ãææè æ°ãç¡è¦ãã¦ããããã§ã¯ããã¾ããã å»çã®ã²ã£è¿«åº¦ã¯å½æ°ã«ã¯ããåããã¾ããããææè ãæ»è ã®ããã«æ¯æ¥çºè¡¨ããã¾ããããã ããç·æ¥åº¦ã®å¤æã«ã¯ããã大åãªææ¨ã§ããè¡æ¿ã¯æ¯æ¥ææ¡ãã¦ããã¹ãã§ããããå»çå¾äºè ã®ç¨¼åç
åæµ·éå¤§å¦ å¤§å¦é¢å»å¦ç ç©¶é¢ ç¤¾ä¼å»å¦åé å»å¦çµ±è¨å¦æ室 Hokkaido University, Department of Biostatistics, Graduate School of Medicine æ°çã¢ãã«ã¨ã¯æ°åã³ããã¦ã¤ã«ã¹ï¼SARS-CoV-2ï¼æµè¡ã§ãä¸å®ãªæ¹ããä»å¾ã©ããªãã®ã ããã¨æ°ã«ãªãæ¹ãå¤ãã¨æãã¾ããææçåéã¯ãä½ããã®ä¼æã«ãã£ã¦ç¾ç çºçãå¼ãèµ·ããããããã«ãæ°çã¢ãã«ãæå¹ã ã¨æãã¾ããå¦å ã§ãæ°çã¢ãã«ãåå¼·ãããã¨ãã声ãèãã¾ãããå®éã«ã¢ãã«ãä½ããã¦ã¿ãã¨ãsocial distancingã®æ義ãä¼ãããã¨æããR shinyãå©ç¨ãã¦ãSEIRã¢ãã«ãå®è£ ããwebãä½æãã¾ããããªããä½æè ã®æ¨ªç°ã¯ç«å¦ã®çµ±è¨ççè«ãå°éã®ã²ã¨ã¤ã¨ãã¦ãã¾ãããææçåéãæ°çã¢ãã«ã«ã¤ãã¦ã¯åå¼·ä¸è¶³ãªé¨åãå¤ãã¨æãã¾ãã誤ãçããã¾ãããã
This is the home page for the book, Bayesian Data Analysis, by Andrew Gelman, John Carlin, Hal Stern, David Dunson, Aki Vehtari, and Donald Rubin. Here is the book in pdf form, available for download for non-commercial purposes. Teaching Bayesian data analysis Aki Vehtari's course material, including video lectures, slides, and his notes for most of the chapters. 77 best lines from my course A stu
ï¼ããã«ãã»ã«ã¼ãã³ææã¨çè ãçè æ®å½±ï¼ å æé¢ä¿ãç解ãããã証æãããããã«ã¯èãæ¹ã®ä½ç³»çãªæ çµã¿ï¼ãã¬ã¼ã ã¯ã¼ã¯ï¼ãå¿ è¦ã§ãããã2ã¤ã®äºè±¡ãå æé¢ä¿ã«ããã¨ä¸»å¼µããã®ã¯åæããããã¾ãããããããäºå®ãªã®ããããã¨ãâè¨ãå¼µã£ã¦ããã ãâãªã®ããå¤æããããã«ã¯ããããè©ä¾¡ããããã®ã«ã¼ã«ãå¿ è¦ã«ãªãã¾ããã©ããªæ¡ä»¶ãæºããã°å æé¢ä¿ã«ããã¨è¨¼æãããã¨ãã§ãã¦ãä½ã足ããªãã¨å æé¢ä¿ãè¿°ã¹ããã¨ãã§ããªãã®ãããç解ãã¾ããããå¦åã®åéã«ãã£ã¦èãæ¹ã¯ã¾ã¡ã¾ã¡ã§ããããã§ã¯ãå°éåéã«é¢ãããæ®éçãªå ææ¨è«ï¼å æé¢ä¿ã«ããã¨ãããã¨ã証æããæ¹æ³ï¼ã®èãæ¹ãç解ããããã«ãï¼ï¼ï¼çµ±è¨å¦ï¼ã«ã¼ãã³ï¼ãï¼ï¼ï¼å¿çå¦ï¼ãã£ã³ãã«ï¼ãï¼ï¼ï¼ç«å¦ï¼ãã¼ã«ï¼ã®3ã¤ã®åéã«ãããå ææ¨è«ãé çªã«èª¬æããå¿ è¦ã«å¿ãã¦å¯¾æ¯ããã¦ããããã¨æãã¾ããä»åã¯ãã®ä¸ã§ãï¼ï¼ï¼çµ±è¨å¦ã«ãããå ææ¨
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}