æ¶è²»ã®åæ»ãç¶ããªããæ¿åºã¨çµæ¸çã¯æ¥å¹´ï¼æããï¼ãæã«ï¼åç¨åº¦ãææ«ã®éææ¥ãããã¬ãã¢ã ãã©ã¤ãã¼ãã¨ããä»äºãæ©ãçµãããã¦è²·ãç©ãé£äºã楽ããã§ããããã¨ãããã£ã³ãã¼ã³ãå ¨å½çã«å±éãããã¨ã«ãªãã¾ããã ãã®ãããæ¿åºã¨çµå£é£ãããã«æµéé¢ä¿ã®æ¥çå£ä½ãªã©ã¯æ¥å¹´ï¼æãããï¼ãæã«ï¼åç¨åº¦ãææ«ã®éææ¥ãããã¬ãã¢ã ãã©ã¤ãã¼ãã¨ããæ¶è²»ã®æ´»æ§åãå¾æ¼ããããã£ã³ãã¼ã³ãå ¨å½çã«å±éããæ¹éã§ããå ·ä½çã«ã¯ãåä¼æ¥ã«å¯¾ãã対象ã¨ãªãææ«ã®éææ¥ã¯å®æããæ©ãæéã«ä»äºãçµããããä¿ãã»ããããã¼ãã飲é£åºãªã©ããã£ã³ãã¼ã³ã«åãããéå®ã®ååããµã¼ãã¹ãæä¾ããããæ è¡ä¼ç¤¾ãé±æ«ãå©ç¨ããæ°ããªãã¢ã¼ååã販売ããããããã¨ãæ¤è¨ããã¦ãã¾ãã ã¢ã¡ãªã«ã§ã¯ã¯ãªã¹ãã¹åæ¦ãæ¬æ ¼åããï¼ï¼æä¸æ¬ã®æè¬ç¥ãæããéææ¥ãããã©ãã¯ã»ãã©ã¤ãã¼ãã¨å¼ã³æ¶è²»ãçãä¸ããã¾ãããæ¥æ¬ã§ãã
ãã©ããã¨ããã®ãåãããªããã¨è¨ãããã®ã§ãç§ããæ§çãªæå³åããæã¤è¨å·ãã ã¨å¤æããç®æãã²ã¨ã¤ãã¤èª¬æãåé¤ããããã§ãå ¬å ±äº¤éæ©é¢ã®å ¬å¼ãã£ã©çµµã¨ãã¦ã®ï¼¯ï¼«ã©ã¤ã³ãããããã¾ããã https://t.co/ZMWMKPX1EB
æ¬ãã¼ã¸ã§ã¯ãPython ã®ã°ã©ãä½æããã±ã¼ã¸ãMatplotlib ãç¨ãã¦åã°ã©ã (pie chart) ãæãæ¹æ³ã«ã¤ãã¦ç´¹ä»ãã¾ãã matplotlib.pyplot.pie ã®æ¦è¦ matplotlib ã«ã¯åã°ã©ããæç»ããã¡ã½ããã¨ãã¦ãmatplotlib.pyplot.pie ãç¨æããã¦ãã¾ãã matplotlib.pyplot.pie ã®ä½¿ãæ¹
ãµã¼ãã¹çµäºã®ãç¥ãã ãã¤ãYahoo! JAPANã®ãµã¼ãã¹ããå©ç¨ããã ãèª ã«ãããã¨ããããã¾ãã ã客æ§ãã¢ã¯ã»ã¹ããããµã¼ãã¹ã¯æ¬æ¥ã¾ã§ã«ãµã¼ãã¹ãçµäºãããã¾ããã ä»å¾ã¨ãYahoo! JAPANã®ãµã¼ãã¹ããæ顧ãã ããã¾ãããããããããé¡ããããã¾ãã
æå°äºä¹æ³ã¨ãã£ããã£ã³ã°ã¨ã¢ãã«ãã©ã¡ã¼ã¿æ¨å®ã«ã¤ã㦠2002/10/26 梶æ¬è£ä¹ [email protected] ãã®æç« ã¯ï¼æå°äºä¹æ³ï¼ãã£ããã£ã³ã°ï¼ãã©ã¡ã¼ã¿æ¨å®ã®æ£ãã解説ããã¹ãã§ã¯ããã¾ãããï¼ç§ããããã®å°é家ã§ã¯ããã¾ããï¼æä¸ã«ã¯ç§ã®èª¤è§£ã«ããé¨åãå¤ã ãããã¨æãã¾ãã®ã§ï¼ãããããä¿¡ããªããããé¡ããã¾ãï¼ãã ç§èªèº«ãå«ãã¦å¨ããè¦åãã¦ã¿ãã¨ï¼å¶å¾¡ãä¿¡å·å¦çã®å²ã¨é«åº¦ãªã¨ããã¾ã§åå¼·ããã¯ããªã®ã«ï¼ããç°¡åãªãã£ããã£ã³ã°ã«ãªãã¨ãã£ããExcelã«é ¼ãä»ãªãã£ããï¼ã¤ã³ãã¼ãã³ã¹åå®ã§æã足ãåºãªããã¨ã«æ°ã¥ãï¼ã¨ããå ´é¢ãå¤ãããã§ãï¼ããããç¶æ ã®çã£åªä¸ã«ããå ´åã¯åèã«ãªãããããã¾ããï¼ ååã§ã¯æå°äºä¹æ³ã¨æ¬ä¼¼éè¡åãå°å ¥ãã¾ãï¼ã¡ã¤ã³ã¨ãªãå¾åã§ã¯ç¹ã«ã¨ã³ã¸ãã¢ãªã³ã°ã§ã®å¿ç¨ä¾ãå¹¾ã¤ãæãã¾ãï¼ä¾ã¨ãã£ã¦ãï¼åæ¹é¢ãããã©
è¨ç®æ©ç§å¦ç¹è« I ã¬ãã¼ã課é¡1 ç·å½¢ã·ã¹ãã ã®åå® 1 ã¯ããã« ã·ã¹ãã ã®è§£æï¼äºæ¸¬ï¼å¶å¾¡ï¼ã·ãã¥ã¬ã¼ã·ã§ã³åã³ç°å¸¸è¨ºæã®ããï¼ã·ã¹ãã ã®åç¹æ§ãç¥ ãå¿ è¦ãããï¼ã·ã¹ãã ã®å ¥åºåä¿¡å·ã®è¦³æ¸¬å¤ã«åºã¥ãã¦ï¼ããè©ä¾¡è¦ç¯ã®ãã¨ã§ãã®ã·ã¹ã ã ããã£ã¨ãããè¨è¿°ããæ°å¦ã¢ãã«ã決å®ãããã¨ãã·ã¹ãã åå®ã¨ããï¼ãã®ãããªçµ±è¨ å¦ã«åºã¥ããåå®æ³ã¯å¤§éãã¤è¤éãªãã¼ã¿å¦çãå¿ è¦ã¨ãããï¼ãã£ã¸ã¿ã«ã³ã³ãã¥ã¼ã¿ ã®çºéã¯ãã®ãããªãã¼ã¿å¦çãå¯è½ã¨ããï¼ãããã£ã¦ï¼ãã® 20 å¹´éã«ï¼ã·ã¹ãã ã®è§£æï¼ äºæ¸¬ï¼å¶å¾¡ãªã©ã®åºç¤ã¨ãªãã·ã¹ãã åå®çè«ã®é²æ©ã¯ããã¾ããï¼æçãã¤ã¤ããï¼ç¾å¨ã§ ã¯ï¼æå°äºä¹æ³ã§ä»£è¡¨ãããã·ã¹ãã ã®ãã©ã¡ã¼ã¿æ¨å®ææ³ã¯å®ã·ã¹ãã ã«ä½¿ããããã«ãª ãï¼å·¥å¦ã®åºç¤æè¡ã®ä¸ã¤ã«æ°ããããããã«ãªã£ãï¼ æ¬æ¼ç¿ã¯ï¼2 次ã®é¢æ£æéç·å½¢ã·ã¹ãã ã®ãã©ã¡ã¼ã¿æ¨å®åé¡ãã·ãã¥ã¬ã¼ã·
ã³ã³ãã¥ã¼ã¿ä¸ã§è¨ç®ãè¡ãããã°ã©ã ã¯ãã¼ã¿æ§é ã¨ã¢ã«ã´ãªãºã ããæ§æãããï¼æ¬è¬ç¾©ã§ã¯ï¼ããã°ã©ãã³ã°ã«ã¤ãã¦ã³ã³ãã¥ã¼ã¿ãµã¤ã¨ã³ã¹ã®ç«å ´ããè«ããã使ç¨ããããã°ã©ãã³ã°è¨èªã¯ Scheme ã§ãããåºæ¬çãªããã°ã©ãã³ã°ã®æ¦å¿µã«ã¤ãã¦å¦ã¶ã¨ã¨ãã«ãå®éã«ããã°ã©ãã³ã°ãçµé¨ãããã¨ãéãã¦ãããã°ã©ãã³ã°ã®æ¬è³ªãç¿å¾ãããã¨ãçãã ãªããæ¬è¬ç¾©ã§ã¯æç§æ¸ã®ååã®è©±é¡ãåãä¸ããå¾åã¯ãããã°ã©ãã³ã°è¨èªã ï¼æ¹¯æ·ºå ç, 第2å¦å¹´åæé å½ï¼ã§åãä¸ããã 1ç« ãæç¶ãã«ããæ½è±¡å ( 3 å ) 1.1ç« ãããã°ã©ãã³ã°ã®è¦ç´ 1.2ç« ãæç¶ãã¨ãã®çæããããã»ã¹ 1.3ç« ãæ½è±¡åã®é«éæç¶ãã«ããå½¢å¼å 2ç« ããã¼ã¿ã«ããæ½è±¡å ( 4 å ) 2.1ç« ããã¼ã¿æ½è±¡åã¨ã¯ 2.2ç« ãé層ãã¼ã¿æ§é ã¨éå æ§ 2.3ç« ãè¨å·ãã¼ã¿ 2.4ç« ãæ½è±¡ãã¼ã¿ã®å¤éè¡¨ç¾ 2.5ç« ãæ±ç¨æ¼ç®ã®
é«æ ¡çã¾ã§ã¯ãçå¹´ï¼åç´çç½®ï¼ã¯ãå ¨æ¥å¶ã®æ®éç§ã®é«æ ¡ã§ããã°ãããã¦ãã®å¦æ ¡ã«ããã¦ã¯ï¼ãã¼ã»ã³ãã«ãæºããªãå°æ°ã®çå¾ã®ãã¨ã§ããããã¨æãã¾ãã ããã©ãã大å¦ã§ã¯ããã§ã¯ããã¾ãããæé¨ç§å¦çã®å¦æ ¡åºæ¬èª¿æ»ã«ããã°ãï¼å¹´å¶å¦é¨ãï¼å¹´ã§åæ¥ããã®ã¯ãå ¥å¦è ã®ããããï¼å²å¼±ã§ããè¶ éãã¦å¨ç±ããã«ï¼å¹´ã§éå¦ãããããã以åã®å¦å¹´ã§ãã§ã«éå¦ãã¦ããå¦çããã¾ãã®ã§ãæ®ãã®ç´ï¼å²ã®ãã¹ã¦ãï¼å¹´ç®ã«çªå ¥ããããã§ã¯ãªãã®ã§ãããããã§ãé«æ ¡ã®å ´åã¨æ¯ã¹ãã°æ¡éãã«å¤ãã®å¦çãæ¢å®ã®å¹´éãè¶ ãã¦å¨ç±ãã¾ããçå¹´ãå«ãã¦ã¨ã«ããåæ¥ã¾ã§ããçãã人ã¯ãå ¥å¦è ã®ããããï¼å²ã§ãã 京é½å¤§å¦ã«ããã¦ãäºæ ã¯ã»ã¼åãã§ãããã ãå¦é¨ã«ããçå¹´ã®çºççã¯ããªãéã£ã¦ãããå ¥å¦å®å¡ã®ï¼å²å°ã«ä¸ãå¦é¨ãããã°ãï¼å²å°ã«çã¾ãå¦é¨ãããã¾ããããã©ãã大å¦å ¨ä½ã§ã¯ããããï¼å²ã®å¦çãçå¹´ãã¦ãã¾ãã ããã
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}