S â¡ (Px - Cx) * (Qy - Cy) - (Py - Cy) * (Qx - Cx) ã¨ããï¼Sï¼0 ãªãå·¦åãï¼Sï¼0 ãªãå³åãï¼Sï¼0 ãªãã° Cï¼Pï¼Q ã¯ä¸ç´ç·ä¸ã«ããï¼(注) ãªãï¼ãã®å¤å¥æ¹æ³ã¯ï¼CP 㨠CQ ãåãé·ãã§ããå¿ è¦ã¯ãªãï¼ Î¸ãæ±ãããå ´åã¯ãã¡ãã¸ï¼ ãã®åé¡ãè¦ã¦ï¼éä¸è§é¢æ° tan-1 (ï¼£è¨èªã§ã¯ atan() ã atan2()) ã使ã£ã¦ CP 㨠CQ ã®è§åº¦ãããããæ±ãï¼ ä¸¡è ãæ¯è¼ãããã¨èããæ¹ãå¤ãã®ã§ã¯ãªãã§ããããï¼ ããããã®åé¡ã§ã¯ï¼è§åº¦ãã®ãã®ã§ã¯ãªãè§åº¦å·®ã®ç¬¦å·ãæ±ããã°ããã®ã§ï¼ éä¸è§é¢æ°ã使ãæ¹æ³ãããç°¡åã§åªããï¼å¤ç©ã使ãæ¹æ³ãç´¹ä»ãã¾ãï¼ ï¼ã¤ã®ï¼æ¬¡å ãã¯ãã« Aï¼(Ax, Ay), Bï¼(Bx, By) ã®å¤ç©ã次ã®ããã«å®ç¾©ããï¼ A à B â¡ Ax * By ï¼ Ay * Bx ãã㧠O
äºã¤ã®ãã¯ãã«a, bãããã¨ã ãã¯ãã«aã¨bã®å ç©ã¯æ¬¡ã®ããã«è¡¨ãããã ãããã£ã¦ ããã¯ãã«ã®å ç©ã£ã¦ä½ï¼ã ã¨ãã質åã«å¯¾ãã¦ã¯ 2ã¤ã®ãã¯ãã«ã®è¦ç´ ãé çªã«ã²ãã£ã¦ãããããæãåããããã®ãå ¨é¨è¶³ãããã® ã¨çãããã¨ãã§ããã ãã¯ãã«ã2次å ã¾ãã¯3次å ã®å ´åããã®ããã«ãã¦æ±ããå¤ããã¾ãã¾æ¬¡ã®å¤ã¨ä¸è´ããï¼Î¸ã¯2ã¤ã®ãã¯ãã«ã®æãè§ï¼ã ï¼ãã®ãã¨ã証æãç´¹ä»ãã¦ããWebãã¼ã¸ã¯ããããããããã¨ãã°ãããï¼ ãã®ããã«ã2ã¤ã®ãã¯ãã«ã®è¦ç´ ãé çªã«ã²ãã£ã¦ãããããæãåããããã®ãå ¨é¨è¶³ãããã®ãã ãã¾ãã¾å¹¾ä½å¦çãªæ§è³ªã表ããè§åº¦ãã«çµã³ä»ãããããããä½ãã¨ä¾¿å©ã«ä½¿ããã ä¾ãã°ãç©ä½ã«ãªãããä»äºã¯ãç©ä½ã«å ããåã®ãã¯ãã«ã¨ãç©ä½ã®ç§»åã表ããã¯ãã«ã®å ç©ãã§è¡¨ãããã ä¸ã®å³ã®ä¾ã§ã¯ããã¯ãã«Fã§ç¤ºãããåã§ãç©ä½ããã¯ãã«dã§ç¤ºãããã ã移åããå ´
é°é¢æ°ã§è¡¨ãã è·é¢ãæ±ãã ç´ç·ã®è¡¨ãæ¹ã«ã¯ããããããã¾ãããããã§ã¯æåã«é°é¢æ°è¡¨ç¤ºã§èãã¦ã¿ã¾ãã é°é¢æ°è¡¨ç¤ºã¨ããã®ã¯ãããªæã表示æ¹æ³ã§ãã ããã£ã¦ããã¨ã¯æãã¾ããããç´ç·ã表ãããã©ã¡ã¼ã¿ã§ãã ãã®ç´ç·ã¨ãç¹Pã¨ã®è·é¢ãèãã¦ã¿ã¾ãã ã¨ãè¨ã£ã¦ããããªããã®ç´ç·ã¨ã®è·é¢ãèããã®ã¯é¢åãªã®ã§ã次ã®ãããªåç¹ãéãç´ç·ã¨ã®è·é¢ãèãã¾ãããã ãã¦ããã®è·é¢ãèããåé¡ã§ããããã¯ãã«ã®å ç©ã使ãã¨ç°¡åã«è§£ãã¦ãã¾ãã¾ãã ãã¯ãã«ãç´ç·ä¸ã®ä½ç½®ãã¯ãã«ãã ç¹Pã®ä½ç½®ãã¯ãã«ãã¨ãã¾ãããã ããã¦ãã®ç´ç·ã®æ¹ç¨å¼ãããè¦ãã¨ãå ç©ã®å½¢ããã¦ããã次ã®ããã«æ¸ãç´ãã¾ãã ãã¯ãã«ã®å ç©=0ã¨è¨ããã¨ã¯2ã¤ã®ãã¯ãã«ãç´äº¤ãã¦ãããã¨ãæå³ãã¾ãã ãããã£ã¦ããã®ç´ç·ã¯åç¹ãéããã¯ãã«ã«ç´äº¤ããç´ç·ã表ããã¦ãã¾ãã å³ã«ããã¨ä¸ã®ããã«ãªãã¾ãã å³ããããã¯ã
â¡ åç« ã® PDF ãè¦ã ï¼ Adobe Reader 6.0 ä»¥ä¸ ãå¿ è¦ ï¼ ( æ´æ°ï¼2008.03.12 ) 第ã1 ç« æ° ç¬¬ã2 ç« æ¹ç¨å¼ 第ã3 ç« é¢æ°ã¨ã°ã©ã 第ã4 ç« ä¸è§é¢æ° 第ã5 ç« å¹³é¢å³å½¢ã¨ãã®æ¹ç¨å¼ 第ã6 ç« ææ°é¢æ°ã»å¯¾æ°é¢æ° 第ã7 ç« å¹³é¢ãã¯ã㫠第ã8 ç« ç©ºéãã¯ã㫠第ã9 ç« è¡åã¨ç·å½¢å¤æ 第 10 ç« è¤ç´ æ° ç¬¬ 11 ç« æ°å 第 12 ç« å¾®åï¼åºç¤ç·¨ 第 13 ç« å¾®åï¼çºå±ç·¨ 第 14 ç« ç©å 第 15 ç« ç¢ºçã»çµ±è¨ â¡ ãã£ã¡ãã¨èªãå ¨ç« PDF HSmath.pdf ã®ãã¦ã³ãã¼ãï¼â»å°å·ã¯åºæ¥ã¾ããï¼ â¡ ãã®ç®æã¯èª¤ããï¼ ãé«æ ¡æ°å¦ï¼Î± ãã®è¨æ£ ï¼è¨æ£ç®æãå®ç©å¤§ã§å°å·å¯è½ã§ã)ï¼ â åºçæ å ±ãè¦ã注æã»å¨åº«ç¢ºèª ãªã© ( å ±ç«åºç ããåºç(^^)/~~~ )
â£xâ£<1|x| < 1â£xâ£<1 ãªãå®æ° xxx ã«ã¤ãã¦ï¼ arcsinâ¡x=x+16x3+340x5+â¯arccosâ¡x=Ï2âxâ16x3â340x5ââ¯\begin{aligned} \arcsin x &= x + \dfrac{1}{6} x^3 + \dfrac{3}{40} x^5 + \cdots\\ \arccos x &= \dfrac{\pi}{2} - x - \dfrac{1}{6} x^3 - \dfrac{3}{40} x^5 - \cdots \end{aligned}arcsinxarccosxâ=x+61âx3+403âx5+â¯=2Ïââxâ61âx3â403âx5ââ¯â ã¨ãªãã ãã®è¨äºã§ã¯éä¸è§é¢æ°ã®ãã¡éæ£å¼¦é¢æ°ï¼arcsinâ¡\arcsinarcsinï¼ã¨éä½å¼¦é¢æ°ï¼arccosâ¡\arccosarccosï¼ã®ãã¯ãã¼ãªã³å±éãè¨ç®ãã¾ã
ãã¯ãã«ä»£æ°1 â ããä¸åº¦ãã¯ãã«1ï¼ãã£ããèï¼ ããä¸åº¦ãã¯ãã«2ï¼ãã¯ãã«ã®èªã¿æ¸ãããã°ãï¼ï¼ãã£ããèï¼ ããä¸åº¦ãã¯ãã«3ï¼å¹¾ä½ã¨ä»£æ°ã®é訳ï¼ï¼ãã£ããèï¼ ãã¯ãã«æ¹ç¨å¼ï¼ãã£ããèï¼ ãã¯ãã«ã®å転ï¼Johèï¼ ç¶ã»ãã¯ãã«ã®å転ï¼ã¯ãã¡ã«èï¼ ç¶ã ã»ãã¯ãã«ã®å転(ã¯ãã¡ã«è) ç¶ã ã ã»ãã¯ãã«ã®å転(ã¯ãã¡ã«è) ç¶Ãï¼ãã¯ãã«ã®å転(ã¯ãã¡ã«è) å次å 空éä¸ã®ãã¯ãã«ã®å転(ã¯ãã¡ã«è) ãã¯ãã«ã®åºåºã®å¤æ(ã¯ãã¡ã«è) 軸æ§ãã¯ãã«ã¨æ¥µæ§ãã¯ãã«ï¼Johèï¼ ä¸éç©ï¼Johèï¼ ãã¯ãã«ã®å²ãç®ï¼Johèï¼ çé¢ä¸è§å½¢ã®è§åº¦ï¼Johèï¼ ä¸æ¬¡å ã®å¤ç©ï¼Johèï¼ ã¬ã¦ã¹ã®å®çã¯æ¬å½ã«å¸¸ã«æãç«ã£ã¦ããã®ï¼ï¼ã¯ãã¡ã«èï¼ â ãã¯ãã«ä»£æ°2 â ãã¯ãã«ãã¨ã¯ããï¼Johèï¼ åºåºã®åº§æ¨å¤æï¼Johèï¼ å ±å¤ãã¯ãã«ã¨åå¤ãã¯ãã«ï¼Johèï¼ å対åºåºï¼Johè
judgeInclusion = function(p1, comparisonArr) { var deg = 0; var p1x = p1.x; var p1y = p1.y; for (var index = 0; index < comparisonArr.length; index++) { var p2x = comparisonArr[index].x; var p2y = comparisonArr[index].y; if (index < comparisonArr.length - 1) { var p3x = comparisonArr[index + 1].x; var p3y = comparisonArr[index + 1].y; } else { var p3x = comparisonArr[0].x; var p3y = comparisonArr[
ç±³Googleã¯12æ5æ¥ï¼ç¾å°æéï¼ãGoogleæ¤ç´¢ã§é¢æ°ãå ¥åããã¨ãé¢æ°ã°ã©ãã表示ããæ©è½ã追å ããã¨çºè¡¨ããã ã°ã©ãã¯æ¡å¤§ã»ç¸®å°ãå¯è½ã ãã«ã³ãã§åºåããã¨ã§ãå¤å¤é¢æ°ã®ã°ã©ãã表示ã§ãããä¸è§é¢æ°ãææ°é¢æ°ã対æ°é¢æ°ã¨ãã®è¤åã«å¯¾å¿ããã ä¾ãã°ãx/2, (x/2)^2, ln(x), cos(pi*x/5)ããæ¤ç´¢ããã¨ãçµæã®ãããã«ã°ã©ãã表示ããããã°ã©ãä¸ã®âã®ä½ç½®ã®å¤ãå³ä¸ã«è¡¨ç¤ºãããè¤åçãªã°ã©ãã®å ´åã¯å³ä¸ã®âã®ãã«ãã¦ã³ã¡ãã¥ã¼ããç¥ãããæ²ç·ã®å¤ãé¸æã§ããã é¢é£è¨äº Googleã§ãAAãã¨æ¤ç´¢ããã¨â¦â¦ Googleã§ãAAãã¨æ¤ç´¢ããã¨ããã´ã«ããå¤åãã iPhoneãAndroidã§ãtiltãã¨ã°ã°ãã¨â¦â¦ï¼ iPhoneãAndroid端æ«ã§ãtiltãã¨ã°ã°ãã¨ç»é¢ãã¡ãã£ã¨å¾ãã GoogleãGoogleæ¤ç´¢ã®é²åã俯ããã§ããã¿
åã®é¢ç©ã®å ¬å¼ãç©åã§è¨¼æããå ´åãåã®æ¹ç¨å¼ãy=±âr^2-x^2ã«ãã¦+ã®æ¹ç¨å¼ã0ï½1ã§ç©åãã¦æå¾ã«4åããã°ãããã©ãç©åã®ããæ¹ãå¿ãã¾ãã! åã®é¢ç©ã®å ¬å¼ãç©åã§è¨¼æããå ´åãåã®æ¹ç¨å¼ãy=±âr^2-x^2ã«ãã¦+ã®æ¹ç¨å¼ã0ï½1ã§ç©åãã¦æå¾ã«4åããã°ãããã©ãç©åã®ããæ¹ãå¿ãã¾ãã! ãããããé¡ããã¾ããç½®æç©åã§ããï¼
å辺ã®å å´å¤å®ã«ããå å¤å¤å® ååã®æã§ãå¤ç©ãç¨ãã¦ç´ç·ã®å·¦å´ã»å³å´ãå¤å®ããææ³ãç´¹ä»ãã¾ããã ãããå©ç¨ãã¦ç¹ã®å å¤å¤å®ãè¡ãã¾ãã ä¾ãã°ãä¸ã®ãããªä¾ãèããã¨ãããããããã¨æãã¾ãã å·¦ã®ä¸è§å½¢ã®è¾ºããABãBCãCAã¨å³åãã«ãªãããã«è¾ºãè¦ã¦ããã¾ãã ä¸è§å½¢ã®ä¸ã®ç¹Pã¯ãå辺ã®å¸¸ã«å³å´ã«ãããã¨ããããã¾ãã ç¹Qã¯BCãCAã®å³å´ã«ãªã£ã¦ã¯ãã¾ãããABã®å·¦å´ã«ããã¾ãã éã«ACãCBãBAã¨å·¦åãã«åã£ãã¨ãã¯ç¹Pã¯å¸¸ã«å·¦å´ã«ããã¾ãã è¦ã¯ãã辺ãããã£ã¨åã£ãæã常ã«ç¹ãåãå´ã«ããâå¤è§å½¢ã®å å´ã«ãããã¨è¨ããã¨ãåºæ¥ã¾ãã å·¦ã®å³ã®ä¾ã§ã¯ãç¹Pã¯å³åãã«è¾ºãåã£ãæ常ã«å³å´ã«ããã¾ãã å³åãã«åã£ãæã«å¸¸ã«å·¦å´ã«ãããã¨è¨ãäºã¯ãããã¾ããã ä¸ã®å³ãè¦ã¦ãå³åãã«åã£ãæ常ã«å·¦å´ã«æ¥ãã¨ããé åã¯åå¨ããªãäºããããã¾ãã ãã®ãããå®éã¯è¾ºãå·¦åã
å¤è§å½¢ã®é¢ç©ãæ±ãã¾ãããã nå¤è§å½¢ã¯nåã®ç¹åº§æ¨(x,y)ã§è¡¨ç¾ã§ããã ç¹1ã(x1,y1) ç¹2ã(x2,y2) ç¹3ã(x3,y3) ç¹4ã(x4,y4) ã» ã» ç¹nã(xn,yn) å³ï¼ã®ãããªãåç¹(0,0)ã¨ç¹ï¼(x1,y1), ç¹2(x2,y2)ã§æ§æãããï¼è§å½¢ã®é¢ç©ãæ±ããã ãã¯ãã«(x1,y1)ã¨ãã¯ãã«(x2,y2)ãä½ãå¹³è¡å辺形ã®é¢ç©(C)㯠C = x1ã»y2 - y1ã»x2ãã¨ãªãã åç §ãï¼ãã¨ã¯ã»ã«ãç¨ãããã¯ãã«ã®å¤ç©è¨ç® ä¸è§å½¢ã®é¢ç©(S)ã¯å¹³è¡å辺形ã®ååã§ããã ãã£ã¦ã S = C/2 ã¨ãªãã åèãï¼ãã¨ã¯ã»ã«ãç¨ãããã¯ãã«ã®å¤ç©è¨ç®
åï¼ã¨åï¼ã®äº¤ç¹ãæ±ãã¾ãããã åï¼ã¯ä¸å¿åº§æ¨(xc1,yc1)ã¨ãã®åå¾ï¼R1)ã§è¡¨ç¾ã§ãã¾ãã å2ã¯ä¸å¿åº§æ¨(xc2,yc2)ã¨ãã®åå¾ï¼R2)ã§è¡¨ç¾ã§ãã¾ãã ä¸å¿éã®è·é¢(L)ã¨è§åº¦(θ)㯠L = â((xc2-xc1)2 + (yc2-yc1)2) θã= tan-1( (yc2-yc1)/(xc2-xc1)) ã¨ãªãã¾ãã ã¨ã¯ã»ã«ã§ã¯ L = sqrt((xc2-xc1)^2 + (yc2-yc1)^2) θã= atan2( xc2-xc1,yc2-yc1) ã§ãã ããã§ä¸å¿ï¼ãä¸å¿ï¼ã交ç¹ã§æ§æãããï¼è§å½¢ã§ãå ¨è¾ºã®é·ããæ±ã¾ãã¾ããã ä½å¼¦å®çãç¨ããã¨ãï¼è¾ºã®é·ãããè§åº¦ãæ±ã¾ãã¾ãã cosï¼Î±) = (L2 + R12 - R22)/(2ã»Lã»R1) ããä½å¼¦å®ç c = cos(αï¼ã¨ããã¨ã αã= cos-1(c)ã=
å°æ¹¾ã®facebookã³ãã¥ããã£ã«ã¦ç®æ°ã®ç°¡åãªå¼ãåºé¡ããã¨ããå¤ãã®äººãééã£ã解çãããã¨ããããã®åé¡ã¯æ¬¡ã®éãã 6÷2ï¼1+2ï¼ï¼ ãã®åé¡ã®æ£è§£ã¯ãããã ãããï¼ããã®å¼ã«å¯¾ãã¦å¤§å¢ã®äººããï¼ãã¨çããã®ã ãä½æ ãã®ãããªè§£çã«ãªã£ãã®ããããã¯å¼ã®æ¸ãæ¹ã«ã«ã©ã¯ãªããã£ããååæ¼ç®ã¯åªå é ä½ãããã®ã¯ãåãã®éããã«ãã³ã®ä¸ãå ã«è¨ç®ããã®å¾ã«ä¹ç®ï¼ããç®ï¼ãé¤ç®ï¼å²ãç®ï¼ãè¨ç®ããï¼ã«ãã³ã®ä¸ã«ä¹ç®ãé¤ç®ãããå ´åã¯ãã¡ããåªå ï¼ãããããã®æ¸ãæ¹ã ã¨ã1+2ã§è¨ç®å¾ã«åã®2ãæãã¦6ã«ãæå¾ã«å é ã®6ã¨å²ã£ã¦ãï¼ãã¨ãã解çã«ãªã£ã¦ãã¾ãã®ã ã ã¤ã¾ããããããã¨ã ã ï¼ééã£ã解çï¼ 6÷2ï¼1+2ï¼ï¼ 6÷2ï¼3ï¼ï¼ 6÷2Ã3ï¼ 6÷6ï¼1 ãããããã¯ééã£ã解çãæ£ããçãã¯ãï¼ãã¨ãªããå ã»ã©ãæ¸ããã¨ããååæ¼ç®ã¯ä¹ç®ã¨é¤ç®ãå é ããè¡ãå¿ è¦ããããæ£ã
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}