DC-DCコンバータ|評価編
スイッチングレギュレータの種類
2014.07.15
スイッチングレギュレータには、いろいろな種類があり、分類の仕方もその観点により様々です。ここでは、入力電源の違い、回路方式、そして機能と動作の違いで分類してみます。
スイッチングレギュレータの回路方式による分類
□DC-DCコンバータ
▼非絶縁型
- 非同期整流式
- 同期整流式
▼絶縁型
- フライバック
- フォワード
- プッシュプル
- ハーフ/フルブリッジ
□AC-DCコンバータ
▼非絶縁型
▼絶縁型
まず、入力電源がDC(直流)かAC(交流)かでDC-DCコンバータとAC-DCコンバータに分けることができ、それぞれに非絶縁型と絶縁型に分かれます。
絶縁型は入力(一次側)と出力(二次側)が絶縁されているタイプで、絶縁には主にトランスフォーマが利用されます。産業機器や医療機器など、障害時に高い安全が求められる場合には標準的に絶縁型が使用されます。非絶縁型は入出力間に導通があり、特に絶縁の必要がない同回路基板内での電圧変換などはほとんどが非絶縁型です。
非絶縁型および絶縁型のコンバータを構築するには、それぞれに適した回路方式があります。同期整流式やフライバックなどの呼称をもっており、構成部品や回路規模、もちろん動作原理も異なります。
次に、機能と動作方式による分類ですが、ここからはDC-DCコンバータで話を進めていきます。AC-DCコンバータは、初段でACを整流-平滑した後は基本的にDC-DCコンバータとしての動作になるので、以後は同じと考えてください。
DC-DC変換においては、入力電圧を降圧または昇圧することができます。また、この応用として昇降圧、反転といった変換も可能です。必要な機能よって、回路構成や選択するICは異なります。
出力電圧を制御する動作モードとして、PWM(Pulse Width Modulation:パルス幅変調)とPFM(Pulse Frequency Modulation:パルス周波数変調)があります。PWMはスイッチング周期(周波数)が一定でONとOFF時間比調整することで安定化を行うモードで、PFMはONまたはOFF時間は一定で周波数を変更する方法です。詳細は後述します。
そして、出力を安定化するためのフィードバック制御の方式として、電流モード、電圧モード、ヒステリシスという種類があります。こちらも詳細は後述します。
スイッチングレギュレータは、これらの組み合わせによって構成されており、用途、入出力条件、要求仕様や性能目標、そしてコストやサイズといった制限事項の検討によって最適なものを選択することになります。そのためには、それぞれの方式の特徴と長所短所を知っておく必要があります。
【資料ダウンロード】 スイッチングレギュレータの特性と評価方法
このハンドブックは、スイッチングレギュレータの基本を確認し、スイッチングレギュレータ用ICのデータシートを読み解くことも併せて、設計の最適化に必要なスイッチングレギュレータの特性の理解と評価の方法を解説しています。
DC-DCコンバータ
基礎編
- 電源回路の定番7方式: 低雑音型から昇圧型まで!
- 昇圧型DC-DCコンバータのシャットダウン時の動作
- 昇圧電源の出力でのスイッチングノイズの低減 -はじめに-
- 昇圧型DC-DCコンバータの出力リップル電圧 -はじめに-
- 昇圧電源の負荷短絡によるトラブルと保護回路 -はじめに-
- 昇圧型DC-DCコンバータの最大出力電流 -はじめに-
- リニアレギュレータの基礎
- スイッチングレギュレータの基礎
- DC-DCの基礎 ーまとめー
設計編
評価編
-
損失の検討
- 同期整流降圧コンバータの制御IC消費電力損失
- 同期整流降圧コンバータのデッドタイム損失
- 同期整流降圧コンバータのゲートチャージ損失
- インダクタのDCRによる導通損失
- 電源ICの電力損失計算例
- 定義と発熱
- 同期整流降圧コンバータの損失
- 同期整流降圧コンバータの導通損失
- 同期整流降圧コンバータのスイッチング損失
- 損失の簡易的計算方法
- パッケージ選定時の熱計算例 1
- パッケージ選定時の熱計算例 2
- 損失要因
- スイッチング周波数を高めて小型化を検討するときの注意
- 高入力電圧アプリケーションを検討するときの注意
- 出力電流が大きいアプリケーションを検討するときの注意 その1
- 出力電流が大きいアプリケーションを検討するときの注意 その2
- 損失の検討 ーまとめー
- スイッチングレギュレータの特性と評価方法の概要
- 電源ICのデータシートの読み方:表紙、ブロック図、絶対最大定格と推奨動作条件
- スイッチングレギュレータの評価:出力電圧
応用編
- リニアレギュレータを使った電源設計のポイント
- LDOリニアレギュレータの並列接続とは
- リニアレギュレータの簡易的な安定性最適化方法
- 汎用電源ICで電源シーケンスを実現する回路
- リニアレギュレータを使った電源が起動しないトラブル事例1:手はんだによるICおよび周辺部品の破損
-
フローティング動作のリニアレギュレータを使った電源設計のポイント -はじめに-
- 例として使うリニアレギュレータICについて
- フローティング動作リニアレギュレータICによる電源回路例
- リニアレギュレータICの出力電圧設定方法
- ロードレギュレーションとフローティング動作リニアレギュレータのケルビン接続
- リニアレギュレータICの出力電圧誤差
- リニアレギュレータICの入出力電圧差と過渡応答およびリップル除去比の関係
- リニアレギュレータの出力コンデンサに関する注意点
- リニアレギュレータの入力コンデンサに関する注意点
- リニアレギュレータの出力リップル電圧増加の防止
- リニアレギュレータの負荷と起動に関する注意点
- リニアレギュレータの効率の求め方
- リニアレギュレータの熱設計:ジャンクション温度の見積もり
- リニアレギュレータの端子保護
- リニアレギュレータの端子保護:出力電圧が入力電圧より高くなる場合
- リニアレギュレータの端子保護:出力負荷が誘導性の場合
- リニアレギュレータの端子保護:入力電源極性逆接続の可能性がある場合
- リニアレギュレータの端子保護:ホットプラグを想定する場合
- リニアレギュレータの端子保護:異電源間に負荷が存在する場合
- リニアレギュレータの端子保護:正負電源(両電源)の場合
- リニアレギュレータの起動特性
- リニアレギュレータの電源オフ時の特性
- リニアレギュレータの突入電流
- リニアレギュレータの過電流保護(OCP)
- リニアレギュレータの過熱保護(TSD)
- リニアレギュレータの等価回路
- フローティング動作のリニアレギュレータを使った電源設計のポイント -まとめ-
製品紹介
FAQ