ã¨ããNBERè«æã上がっているï¼ungated版ï¼ãåé¡ã¯ãUnpacking P-Hacking and Publication Biasãã§ãèè
ã¯Abel Brodeurï¼ãªã¿ã¯å¤§ï¼ãScott E. Carrellï¼ãããµã¹å¤§ãªã¼ã¹ãã£ã³æ ¡ï¼ãDavid N. Figlioï¼ããã§ã¹ã¿ã¼å¤§ï¼ãLester R. Lusherï¼ããããã¼ã°å¤§ï¼ã
以ä¸ã¯ãã®è¦æ¨ã
We use unique data from journal submissions to identify and unpack publication bias and p-hacking. We find that initial submissions display significant bunching, suggesting the distribution among published statistics cannot be fully attributed to a publication bias in peer review. Desk-rejected manuscripts display greater heaping than those sent for review i.e. marginally significant results are more likely to be desk rejected. Reviewer recommendations, in contrast, are positively associated with statistical significance. Overall, the peer review process has little effect on the distribution of test statistics. Lastly, we track rejected papers and present evidence that the prevalence of publication biases is perhaps not as prominent as feared.
ï¼æ訳ï¼
æã ã¯ãç¬èªã®å¦è¡èªæ稿ãã¼ã¿ãç¨ãã¦ãåºçãã¤ã¢ã¹ã¨på¤ãããã³ã°ã解æãããå½åã®æåºçã«ããã¦ææãªéä¸ããããã¨ãæã ã¯è¦ãåºããããã®ãã¨ã¯ãæ²è¼ãããçµ±è¨ã®åå¸ããã¹ã¦ãã¢ã¬ãã¥ã¼ã®åºçãã¤ã¢ã¹ã®ããã«ã¯ã§ããªããã¨ã示ãã¦ãããç·¨éãã¹ã¯ãå´ä¸ããå稿ã«ã¯ã¬ãã¥ã¼ã«åããããã®ãããå¤ãã®éä¸ãè¦ããããå³ã¡ãè¾ããã¦ææãªçµæã¯ç·¨éãã¹ã¯ã®æ®µéã§å´ä¸ãããå¯è½æ§ãé«ããå¯¾ç §çã«ãã¬ãã¥ã¢ã¼ã®æ¨å¥¨ã¯çµ±è¨çæææ§ã¨æ£ã®é¢ä¿ããã£ããå ¨ä½çã«ããã¢ã¬ãã¥ã¼ã®ããã»ã¹ã¯æ¤å®çµ±è¨éã®åå¸ã«ãã¾ãå½±é¿ãã¦ããªããæã ã¯ã¾ããå´ä¸ãããè«æã追跡ããåºçãã¤ã¢ã¹ã®è延ã¯ããããæããããã»ã©é¡èã§ã¯ãªãã¨ãã証æ ãæ示ããã