ç§å¦
ã¨ããNBERè«æãä¸ãã£ã¦ãããåé¡ã¯ãRevisiting the Private Value of Scientific Inventionsãã§ãèè ã¯Ashish AroraãSharon BelenzonãElia FerracutiãJay Prakash Nagarï¼ãããããã¥ã¼ã¯å¤§ï¼ã 以ä¸ã¯ãã®è¦æ¨ã Estimating the private value oâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ãããåé¡ã¯ãGeneration and Impact of Novel Articles in Physicsãã§ãèè ã¯Jacques Mairesseï¼CREST-ENSAE*1ï¼ãMichele Pezzoniï¼ã³ã¼ãã»ãã¸ã¥ã¼ã«å¤§ï¼ãFrederique Sachwaldï¼Observatoire des Sciences et Techniques, Hâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼cf. ã¿ã¤ã©ã¼ã»ã³ã¼ã¨ã³ã®ç´¹ä»ãungatedçã¸ã®ãªã³ã¯ãããèè ã®ä¸äººã®ãã¼ã¸ï¼ãåé¡ã¯ãThe ABCâs of Who Benefits from Working with AI: Ability, Beliefs, and Calibrationãã§ãèè ã¯Andrew Caplinï¼NYUï¼ã David J.â¦
ã¨ããNBERè«æãä¸ãã£ã¦ãããåé¡ã¯ãOld and Connected versus Young and Creative: Networks and the Diffusion of New Scientific Ideasãã§ãèè ã¯Wei Chengï¼è¯æ±ç工大ï¼ãBruce A. Weinbergï¼ãªãã¤ãªå·ç«å¤§ï¼*1ã 以ä¸ã¯ãã®è¦æ¨ã The adoptionâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçã¸ã®ãªã³ã¯ãããèè ã®ä¸äººã®ãã¼ã¸ï¼ãåé¡ã¯ãCan Operation Warp Speed Serve as a Model for Accelerating Innovations Beyond COVID Vaccines?ãã§ãèè ã¯Arielle D'Souzaï¼Institute for Progress*1ï¼, Kendâ¦
ãã¡ãã®ã¯ã¦ã¶ã§ããã¯ãã¼ã¯ãããã¤ã¼ãã«ããããã¯ããªãªãã¡ã¼ã¸ã®æä¾ãæãããç 究è ãããã®æãã®æç´ãããã¯ããªãªãã¡ã¼ã¸ãæ½åºãããã¨ãã話ãåºã¾ã£ã¦ããããåã¯ã¦ã¶ã§ãªã³ã¯ããã»ã«è¨äºã«ããããã«ãå½äºè ã¨ããã人ï¼ã·ããã¼ã»ãâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungated(SSRN)çï¼ãåé¡ã¯ãHow Learning About Harms Impacts the Optimal Rate of Artificial Intelligence Adoptionãã§ãèè ã¯Joshua S. Gansï¼ããã³ã大ï¼ã 以ä¸ã¯ãã®è¦æ¨ã This paper examines recent proposals â¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼H/T Mostly Economicsï¼ungatedçã¸ã®ãªã³ã¯ãããèè ã®ä¸äººã®ãã¼ã¸ï¼ãåé¡ã¯ãRegulating Artificial Intelligenceãã§ãèè ã¯Joao Guerreiroï¼UCLAï¼ãSergio Rebeloï¼ãã¼ã¹ã¦ã¨ã¹ã¿ã³å¤§ï¼ãPedro Telesï¼ãã«ãã¬ã«éâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼H/T ã¿ã¤ã©ã¼ã»ã³ã¼ã¨ã³ï¼ãåé¡ã¯ãHow Credible is the Credibility Revolution?ãã§ãèè ã¯Kevin Langï¼ãã¹ãã³å¤§ï¼ã 以ä¸ã¯æ¬æããã®å¼ç¨ã Suppose you test a null hypothesis, and the t turns out to be 1.96. Asâ¦
ååã¨ã³ããªã®æ³¨ã§è»¢æçæè¡ã®æé·ãå éãããä¾ã¨ãã¦ç±³ã½ã®å®å®éçºç«¶äºãæããããã¾ãã«ãã®ç¹ãæ±ã£ã表é¡ã®NBERè«æãä¸ãã£ã¦ããï¼ungatedçã¸ã®ãªã³ã¯ãããèè ã®ä¸äººã®ãã¼ã¸ï¼ãåé¡ã¯ãMoonshot: Public R&D and Growthãã§ãèè ã¯Shawn Kâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ãããåé¡ã¯ãResting on Their Laureates? Research Productivity Among Winners of the Nobel Prize in Physiology or Medicineãã§ãèè ã¯Jay Bhattacharyaï¼ã¹ã¿ã³ãã©ã¼ã大ï¼ãPaul Bollykyï¼åï¼ãJeremy D. Goldhaber-Fieâ¦
æ¥æ¬äººã¯çæAIã«ç¥æ§ãå¹»è¦ããã¡ã ãã欧米人ã¯éå ·ã¨ãã¦å²ãåã£ã¦ãããã¨ãã主æ¨ã®ã¯ã¦ãªå¿åãã¤ã¢ãªã¼ã話é¡ã«ãªã£ãããããããããããå¹»æ³ã¯AIæ¥çã®é»ææã«ç«¯ãçºãã¦ããããã®å¹»æ³ãçµæ¸å¦çè¦ç¹ããã®AIã®è¦å¶ã妨ãã¦ãããã¨ãã趣æ¨ã®â¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçï¼ãåé¡ã¯ãA Simple Rational Expectations Model of the Voltage Effectãã§ãèè ã¯Omar Al-Ubaydliï¼ã¸ã§ã¼ã¸ã¡ã¤ã½ã³å¤§ï¼ãChien-Yu Laiï¼ã·ã«ã´å¤§ï¼ãJohn A. Listï¼åï¼ã 以ä¸ã¯ãã®è¦æ¨ã The âvoltage efâ¦
ãã¡ãã§é¢é£ãã¤ã¼ãããã¯ãããããã«ãç«å¦è ã¨çµæ¸å¦è ã®ã³ãã対çã«é¢ããèãæ¹ã®éãã大ãããªã£ã¦ããããã§ãããç°¡åã«è¨ãã¨ãçµæ¸å¦è ãæ¿çä»å ¥ã®ç¡ãçµæ¸æ´»åãéè¦ãããªãã¯ãã³æ ªã®ã¤ã³ãã«ã¨ã³ã¶ä¸¦ã¿ã®è»½çåã«éã¿ã¦ã³ããã¸ã®ç¹æªæ³â¦
ã¨ããNBERè«æãä¸ãã£ã¦ãããåé¡ã¯ãModeling Machine Learningãã§ãèè ã¯Andrew Caplinï¼NYUï¼ãDaniel J. Martinï¼ãã¼ã¹ã¦ã¨ã¹ã¿ã³å¤§ï¼ãPhilip Marxï¼ã«ã¤ã¸ã¢ãå·ç«å¤§ï¼ã 以ä¸ã¯ãã®è¦æ¨ã What do machines learn, and why? To answer these quâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçï¼ãåé¡ã¯ãThe Human Perils of Scaling Smart Technologies: Evidence from Field Experimentsãã§ãèè ã¯Alec Brandonï¼ã¸ã§ã³ãºã»ãããã³ã¹å¤§ï¼ãChristopher M. Clappï¼ã·ã«ã´å¤§ï¼ãJohn A. Listï¼åï¼ãRobâ¦
ã¨ããNBERè«æããµã¤ã¢ã³ã»ã¸ã§ã³ã½ã³ããä¸ãã¦ããï¼ungatedçï¼ãåé¡ã¯ãPlace-Based Productivity and Costs in Scienceãã§ãèè ã¯Jonathan Gruberï¼MITï¼ãSimon Johnsonï¼åï¼ãEnrico Morettiï¼UCãã¼ã¯ã¬ã¼ï¼ã è¦æ¨ã§ã¯ãç§å¦è ã®éç©ã1å²å¢å â¦
ã¨é¡ããã¨ã³ããªï¼åé¡ã¯ãProfile*1 of Solomon Hsiang, who uses big data to inform climate change policies..ãï¼ã§Mostly EconomicsããIMFã®å£åèªFinance & Development9æå·ã®äººç©ç´¹ä»è¨äºã®åé ãå¼ç¨ãã¦ããããã®å£åèªã®è¨äºã¯æ¬ããã°ã§ãä½â¦
ã¨ããNBERè«æãä¸ãã£ã¦ãããåé¡ã¯ãCrisis Innovation Policy from World War II to COVID-19ãã§ãèè ã¯Daniel P. Grossï¼ãã¥ã¼ã¯å¤§ï¼ãBhaven N. Sampatï¼ã³ãã³ãã¢å¤§ï¼ã 以ä¸ã¯ãã®è¦æ¨ã Innovation policy can be a crucial component of goveâ¦
æ¢ã«ãã¥ã¼ã¹ã§å ±ãããã¦ããããã«ã京é½å¤§å¦ã®æææ°ä¸ææã«ããabcäºæ³ã®è¨¼æãæ»èªãçµã¦PRIMSç¹å¥å·é»åçã«3æ4æ¥ä»ã§æ²è¼ãããããæ¬ããã°ã®éå»ã®ã¨ã³ããªï¼ããããããããï¼ã§ç´¹ä»ããæµ·å¤ã®å¦è ã¨æææ°ã¨ã®æºã¯ãããæ·±ã¾ã£ãããã§ãããâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ãããåé¡ã¯ãOrganizing Crisis Innovation: Lessons from World War IIãã§ãèè ã¯Daniel Grossï¼ãã¥ã¼ã¯å¤§ï¼ãBhaven Sampatï¼ã³ãã³ãã¢å¤§ï¼ã 以ä¸ã¯ãã®è¦æ¨ã World War II was one of the most acute emergencies in U.Sâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçã¸ã®ãªã³ã¯ï¼ãåé¡ã¯ãThe Contribution of Chinese Diaspora Researchers to Scientific Publications and China's "Great Leap Forward" in Global Scienceãã§ãèè ã¯Qingnan Xieï¼å京ç工大ï¼ãRichard B. Frâ¦
17æ¥ã¨ã³ããªã®è注ã§è§¦ããããã«ã³ã¼ã¨ã³ã¯IHMEï¼ã¯ã·ã³ãã³å¤§å¦ä¿å¥ææ¨è©ä¾¡ç 究æï¼ã¢ãã«ã¸ã®æ¹å¤ãå±éãã¦ããããããã¸ãï¼ahemï¼ãã¨é¡ãããã¡ãã®ã¨ã³ããªã§ã¯ãã»ãè¦ããã¨ããã¨è¨ããã°ããã«ãã®åé¡ãåãä¸ããStatNewsè¨äºã«ãªã³ã¯ããâ¦
ååã¨ã³ããªã§ç´¹ä»ããã³ã¼ã¨ã³ã®ææçã¢ãã«ã«å¯¾ããææã¯å®ã¯å½¼ã®ããã°ã¨ã³ããªã®ååé¨åã§ãå¾åé¨åã§ã¯å½¼ã®ææçå¦è ã«å¯¾ããçç´ãªçåãæ¸ãé£ãããã¦ãããããã¸ã®å¿çãã¡ã¼ã«ã§ãã£ãã¨ã®ãã¨ã§ãã¡ã¼ã«ã®æç« ãã³ã¼ã¨ã³ãMRã®å¥ã¨ã³ããªâ¦
ã¿ã¤ã©ã¼ã»ã³ã¼ã¨ã³ãMRããã°ã§çµæ¸å¦è ããè¦ãææçã¢ãã«ã®åé¡ç¹ãæãã¦ããã以ä¸ã¯ãã®æ¦è¦ã 調æ´ã®é·æçãªå¼¾åæ§ãçæçãªå¼¾åæ§ããå¼·åã§ãããã¨ãååã«ç解ãã¦ããªã çæçã«ã¯äººã ã¯ç¤¾ä¼çéé¢ãè¡ãããé·æçã«ã¯ã©ã®ç¤¾ä¼çéé¢ã®æ¹â¦
1å¹´åã»ã©åã«ABCäºæ³ã«é¢ãããã¼ã¿ã¼ã»ã·ã§ã«ãã®è¦è§£ãç´¹ä»ãããã¨ããã£ãããããã§ãªã³ã¯ããPeter Woitã®ããã°ã§ä»åã®ã証æããæ©ã«æ¹ãã¦ABCäºæ³ã«é¢ããã¨ã³ããªãç«ã¡ããã¡ãã®ã³ã¡ã³ãæ¬ã«ã·ã§ã«ããéè¨ãã¦ããï¼H/T math_jinãããã¤ã¼ãâ¦
ãµã¨ããã¤ã¦æ¸©æå対çã®è¡ãéããè«ãããã§ã«ã³ã»ãã³ãã«ã°ã¯ã°ã¬ã¿ã»ãã¥ã¼ã³ããªã«ã¤ãã¦ä½ãè¨ã£ã¦ããã®ããªãã¨ããã£ã¦ã¿ãã¨ããã9ææ«ã«ãã®ãããªè«èª¬ãæ¸ãã¦ãããã¨ãç¥ã£ãã以ä¸ã¯ãã®æ¦è¦ã 人éãæ°åå¤åã®ç§å¦ãç解ãã¦è¡åããªãâ¦
ãã¢ã³ãã»ã¤ã³ã¿ãã¥ã¼ã®æ¨æ¥ã¨ã³ããªã§ç´¹ä»ããç®æã§ããªã¼ããã³ã¯ãããã¼ãã大ããªå½±é¿ãåãããã¨ãèªãã¦ãããããããã®å¾ããã¼ã¯ãããªã¼ããã³ã®æ¹æ³è«ãéå ·ä¸»ç¾©ï¼instrumentalismï¼ã¨ãã¦ãããæ¹å¤ããããã«ãªãã人éçã«ãå¯å®¹ãã失ã£â¦
å¼ãç¶ããã£ã¼ã«ãºè³é¢é£ãã¿ã5æ¥ã¨ã³ããªã§ãªã³ã¯ããPeter Woitããã°ã®ææ°è¨äºã§ã¯ãæè³çµç¹ã§ããå½éæ°å¦è ä¼è°ã®ãã¹ã³ã対å¿ã®æããææãã¦ããã While I was away the big mathematics news was from the ICM. As everyone expected, one of â¦
5æ¥ã¨ã³ããªã§2人ã®ãã£ã¼ã«ãºè³åè³è ã®ã³ã¡ã³ããç´¹ä»ããããã°ã¨ã³ããªã«ã¯ãããä¸äººãä»å¹´ã®ãã£ã¼ã«ãºè³åè³è ã§ããAkshay Venkateshãã³ã¡ã³ããã¦ããï¼H/T math_jinãããã¤ã¼ãï¼ããã ããã®å 容ã¯ãå®å ¨åæãï¼I couldnât agree more.ï¼ãã¨â¦