çµ±è¨
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçï¼ãåé¡ã¯ãA Flexible, Heterogeneous Treatment Effects Difference-in-Differences Estimator for Repeated Cross-Sectionsãã§ãèè ã¯Partha Debï¼ãã³ã¿ã¼å¤§ï¼ãEdward C. Nortonï¼ãã·ã¬ã³å¤§ï¼ãJeffrey M. â¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçï¼ãåé¡ã¯ãOn the Identifying Power of Generalized Monotonicity for Average Treatment Effectsãã§ãèè ã¯Yuehao Baiï¼åã«ãªãã©ã«ãã¢å¤§ï¼ãShunzhuang Huangï¼ã·ã«ã´å¤§ï¼ãSarah Moonï¼MITï¼ãAzeem Shaikâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçï¼ãåé¡ã¯ãAdapting to Misspecificationãã§ãèè ã¯Timothy Armstrongï¼åã«ãªãã©ã«ãã¢å¤§ï¼ãPatrick M. Klineï¼UCãã¼ã¯ã¬ã¼ï¼ãLiyang Sunï¼ã¦ããã¼ã·ãã£ã»ã«ã¬ãã¸ã»ãã³ãã³ï¼ã 以ä¸ã¯ãã®è¦æ¨ã Empirâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçï¼ãåé¡ã¯ãDouble Robustness of Local Projections and Some Unpleasant VARithmeticãã§*1ãèè ã¯José Luis Montiel Oleaï¼ã³ã¼ãã«å¤§ï¼ãMikkel Plagborg-Møllerï¼ããªã³ã¹ãã³å¤§ï¼ãEric Qianï¼åï¼ãChristiâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçã¸ã®ãªã³ã¯ãããèè ã®ä¸äººã®ãã¼ã¸ï¼ãåé¡ã¯ãCredible Numbers: A Procedure for Reporting Statistical Precision in Parameter Estimatesãã§ãèè ã¯Nicolas Astierï¼ããªçµæ¸å¦æ ¡ï¼ãFrank A. Wolakï¼ã¹ã¿ã³â¦
ç´è¿ã®NBERè«æããå·®ã®å·®é¢ä¿ã®è«æãããä¸ä¸ã表é¡ã®è«æï¼ungatedçï¼ã®åé¡ã¯ãDifference-in-differences with a Continuous Treatmentãã§ãèè ã¯Brantly Callawayï¼ã¸ã§ã¼ã¸ã¢å¤§ï¼ãAndrew Goodman-Baconï¼ããã¢ããªã¹é£éï¼ãPedro H. C. Sant'Anâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ãããåé¡ã¯ãStacked Difference-in-Differencesãã§ãèè ã¯Coady Wingï¼ã¤ã³ãã£ã¢ã大ï¼ãSeth M. Freedmanï¼åï¼ãAlex Hollingsworthï¼ãªãã¤ãªå·ç«å¤§ï¼ã 以ä¸ã¯ãã®è¦æ¨ã This paper introduces the concept of a "trimmeâ¦
ã¨ããNBERè«æãã¸ã§ã¼ã ãºã»ããã«ãã³ããä¸ãã¦ããï¼ungatedçï¼ãåé¡ã¯ãPrincipal Component Analysis for Nonstationary Seriesãã§ãèè ã¯James D. Hamiltonï¼UCãµã³ãã£ã¨ã´ï¼ãJin Xiï¼åï¼ã 以ä¸ã¯ãã®è¦æ¨ã This paper develops a procedurâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçï¼ãåé¡ã¯ãBootstrap Diagnostics for Irregular Estimatorsãã§ãèè ã¯Isaiah Andrewsï¼MITï¼ãJesse M. Shapiroï¼ãã¼ãã¼ã大ï¼ã 以ä¸ã¯ãã®è¦æ¨ã Empirical researchers frequently rely on normal approxiâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ãããåé¡ã¯ãWhat to do when you can't use '1.96' Confidence Intervals for IVãã§ãèè ã¯David S. Leeï¼ããªã³ã¹ãã³å¤§ï¼ãJustin McCraryï¼ã³ãã³ãã¢å¤§ï¼ãMarcelo J. Moreiraï¼FGVï¼ãJack Porterï¼ã¦ã£ã¹ã³ã³ã·ã³å¤§å¦ãâ¦
ã¨ããBISã¬ãã¼ããMostly Economicsãç´¹ä»ãã¦ãããåé¡ã¯ãMonetary policy, financial conditions and real activity: is this time different?ãã§ãèè ã¯åè¡ã®Fernando AvalosãDeniz IganãCristina ManeaãRichhild Moessnerã 以ä¸ã¯ãã®è¦æ¨ã â¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçã¸ã®ãªã³ã¯ãããèè ã®ä¸äººã®ãã¼ã¸ï¼ãåé¡ã¯ãCausal Interpretation of Structural IV Estimandsãã§ãèè ã¯Isaiah Andrewsï¼MITï¼ãNano Barahonaï¼UCãã¼ã¯ã¬ã¼ï¼ãMatthew Gentzkowï¼ã¹ã¿ã³ãã©ã¼ã大ï¼ãAsâ¦
ã¨ããNBERè«æãã¢ã³ãã¬ã¤ã»ã·ã¥ã©ã¤ãã¡ã¼ããä¸ãã¦ããï¼ungatedçï¼ãåé¡ã¯ãHow People Use Statisticsãã§ãèè ã¯Pedro Bordaloï¼ãªãã¯ã¹ãã©ã¼ã大ï¼ãJohn J. Conlonï¼ã¹ã¿ã³ãã©ã¼ã大ï¼ãNicola Gennaioliï¼ããã³ã¼ã大ï¼ãSpencer Yongwookâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼H/T ã¿ã¤ã©ã¼ã»ã³ã¼ã¨ã³ï¼ãåé¡ã¯ãHow Credible is the Credibility Revolution?ãã§ãèè ã¯Kevin Langï¼ãã¹ãã³å¤§ï¼ã 以ä¸ã¯æ¬æããã®å¼ç¨ã Suppose you test a null hypothesis, and the t turns out to be 1.96. Asâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungated(IDEAS)çï¼ãåé¡ã¯ãUsing Machine Learning for Efficient Flexible Regression Adjustment in Economic Experimentsãã§ãèè ã¯John A. Listï¼ã·ã«ã´å¤§ï¼ãIan Muirï¼Lyftï¼ãGregory K. Sunï¼ã·ã«ã´å¤§ï¼ã 以ä¸â¦
ã¨ããNBERè«æãFrancis X. Dieboldããä¸ãã¦ããï¼ungatedçï¼ãåé¡ã¯ãA New Test for Market Efficiency and Uncovered Interest Parityãã§ãèè ã¯Richard T. Baillieï¼ãã·ã¬ã³å·ç«å¤§ï¼ãFrancis X. Dieboldï¼ãã³ã·ã«ããã¢å¤§ï¼ãGeorge Kapetanioâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ãããåé¡ã¯ãModeling Machine Learningãã§ãèè ã¯Andrew Caplinï¼NYUï¼ãDaniel J. Martinï¼ãã¼ã¹ã¦ã¨ã¹ã¿ã³å¤§ï¼ãPhilip Marxï¼ã«ã¤ã¸ã¢ãå·ç«å¤§ï¼ã 以ä¸ã¯ãã®è¦æ¨ã What do machines learn, and why? To answer these quâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼Labour Economicsæ²è¼çã2015å¹´æç¹ã®WPï¼ãåé¡ã¯ãSimple Tests for Selection: Learning More from Instrumental Variablesãã§ãèè ã¯Dan A. Blackï¼ã·ã«ã´å¤§ï¼ãJoonhwi Jooï¼ãããµã¹å¤§å¦ãã©ã¹æ ¡ï¼ãRobert LaLondeâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçï¼ãåé¡ã¯ãLocal Projections vs. VARs: Lessons From Thousands of DGPsãã§ãèè ã¯Dake Liï¼ããªã³ã¹ãã³å¤§ï¼ãMikkel Plagborg-Møllerï¼åï¼ãChristian K. Wolfï¼MITï¼ã 以ä¸ã¯ãã®è¦æ¨ã We conduct a simuâ¦
MITã®ã¨ã·ã¥ã¢ã»ã¢ã³ã°ãªã¹ãï¼Joshua Angristï¼ã表é¡ï¼åé¡ã¯ãEmpirical Strategies in Economics: Illuminating the Path from Cause to Effectãï¼ã®æ¨å¹´ã®ãã¼ãã«è³è¨å¿µè¬æ¼ãNBERè«æã¨ãã¦ä¸ãã¦ããã以ä¸ã¯ãã®è¦æ¨ã The view that empirical stâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ããï¼ungatedçï¼ãåé¡ã¯ãWhen is TSLS Actually LATE?ãã§ãèè ã¯Christine Blandholï¼ããªã³ã¹ãã³å¤§ï¼ãJohn Bonneyï¼ã¹ã¿ã³ãã©ã¼ã大ï¼ãMagne Mogstadï¼ã·ã«ã´å¤§ï¼ãAlexander Torgovitskyï¼åï¼ã 以ä¸ã¯ãã®è¦æ¨ã Lineâ¦
ã¨ããNBERè«æãä¸ãã£ã¦ãããåé¡ã¯ãResearchers' Degrees-of-Flexibility and the Credibility of Difference-in-Differences Estimates: Evidence From the Pandemic Policy Evaluationsãã§ãèè ã¯Joakim A. Weillï¼UCãã¼ãã¹ï¼ãMatthieu Stiglerâ¦
以åããã³ã°ã©ãã·ã¥ã§ã®ãã¹ã¯çç¨ã«é¢ããRCTã«ã¤ãã¦ãBen Rechtã«ããæ¹å¤çãªæ¤è¨¼ãåãä¸ãããã¨ããã£ãããã®å¾ãç 究è ããã¼ã¿ãå ¬éããã¨ã®ãã¨ã§ãRechtãå ¬éèªä½ã¯è³è³ãã¤ã¤ãæ¹ãã¦ãã®ãã¼ã¿ãæ¹å¤çã«æ¤è¨¼ãã¦ããï¼H/T ã¿ã¤ã©ã¼ã»ã³ã¼â¦
Philippe Lemoineã¨ããã³ã¼ãã«ã®å士課ç¨ã«ããç 究è ããèªããæå±ããThe Center for the Study of Partisanship and Ideologyï¼CSPIï¼ã¨ããçµç¹ã®ããã°ã«ãHave we been thinking about the pandemic wrong? The effect of population structure on â¦
Scott Alexanderã¨ããæåããã¬ã¼ï¼cf. Slate Star Codex - Wikipediaï¼ã«ããã¤ãã«ã¡ã¯ãã³ã®Covid-19ã¸ã®å¹æã®ã¡ã¿åæãã¿ã¤ã©ã¼ã»ã³ã¼ã¨ã³ãæ¨å¥¨ãã¦ãããæ¥æ¬èªè¨äºã§ã¯æ¢ã«gigazineããã®æ¦è¦ãç´¹ä»ãã¦ããã ãã®ããã°ã§ã¢ã¬ããµã³ãã¼ã¯ãã¤â¦
以ä¸ã®ãã¤ã¼ããç®ã«ãã¦ãå®éã®æ¸¬å®å¤ã¯ã¨ããããææã¢ãã«ä¸ã¯ææãåã¾ã£ãæã«å®å¹åçç£æ°ã¯ã©ããªãã®ããã¨ããçåãæ±ãããçãã大äºãªãã¨ãªã®ã§èª¤è§£ã®å 容ã«ãé¡ããã¾ãããã®æ°åã¯ææè æ°ãä¸ããããã¨å¿ ã1ã«ãªãã¾ãã https://t.câ¦
ãã³ã°ã©ãã·ã¥ã§ã®RCTã®çµæãåºã«ããã¹ã¯ã¯ã³ããææé²æ¢ã«æå¹ã§ãããã¨ããå ±åãåºãããããUCãã¼ã¯ã¬ã¼ã®æ©æ¢°å¦ç¿ã®ç 究è ã§ããBen RechtããEffect size is significantly more important than statistical significance.ãã¨é¡ããããã°ã¨ã³â¦
ã¨ããNBERè«æãå æä¸ãã£ã¦ããï¼æ¨å¹´10ææç¹ã®WPï¼ãåé¡ã¯ãValid t-ratio Inference for IVãã§ãèè ã¯David S. Leeï¼ããªã³ã¹ãã³å¤§ï¼ãJustin McCraryï¼ã³ãã³ãã¢å¤§ï¼ãMarcelo J. Moreiraï¼FGVï¼ãJack Porterï¼ã¦ã£ã¹ã³ã³ã·ã³å¤§å¦ããã£ã½ã³æ ¡â¦
ã¢ã³ããªã¥ã¼ã»ã²ã«ãã³ãã¿ã¤ã©ã¼ã»ã³ã¼ã¨ã³ãç´¹ä»ãã¦ãããããã³ã·ã«ããã¢å¤§å¦ãã¬ã«ãã³å»å¦é¨ã®Jeffrey S. Morrisçç©çµ±è¨å¦ææãç«ã¡ä¸ããã³ããé¢é£ã®ç¹è¨ãµã¤ãã§ãã¤ã¹ã©ã¨ã«ã®éçè ã®æ°åãã©ãèªãã¹ãã解説ãã¦ããã 以ä¸ã¯ãã®æ¦è¦ã ã¤â¦
ã¨ããAERæ²è¼äºå®è«æãã¿ã¤ã©ã¼ã»ã³ã¼ã¨ã³ãç´¹ä»ãã¦ãããè«æã®åé¡ã¯ãMethods Matter: P-Hacking and Publication Bias in Causal Analysis in Economicsãã§ãèè ã¯Abel BrodeurãNikolai CookãAnthony Heyesï¼ãããããªã¿ã¯å¤§ï¼ã 以ä¸ã¯ãã®è¦æ¨â¦